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Chapter 1

Introduction

In this course we will be concerned with ordinary differential equations, ODEs.

Definition 1. An ordinary differential equation (ODE) is a differential equation containing one or
more functions of exactly one independent variable and its derivatives.

ODEs relate the change of one variable to changes in another variable and can be used to model
and understand a wide variety of phenomena, such as projectile motion, animal population interactions
and the progression of chemical reactions.

In these notes we consider two important aspects in the theory of ordinary differential equations.
Specifically, we seek to

1. develop methods of modelling physical phenomena;

2. understand the properties of the equations without explicitly solving them.

Point 2 may seem counter-intuitive as we have a variety of techniques that enable us to solve
ODEs in closed form. Further, even if an explicit solution is not available, we can use numerical
simulations to illustrate the dynamics of the ODEs. However, direct solutions are not always possible
and, even when they are, they may not always enable clear interpretations and understanding of the
underlying system. Equally, our analytical techniques will give us confidence in the solutions produced
by numerical software.

Critically, what we gain in analytical specificity, we lose in global accuracy. Namely, we are going
to learn techniques that will allow us to rigorously examine small regions of the ODE space at the
expense of losing knowledge of the global dynamics. However, by the end of the course we will be able
to patch together multiple parts of the local analysis in order to give us an approximate understanding
of the entire dynamical system.

1.1 Preliminary definitions

We will be considering the rate of change of a variable, u, with respect to another variable, t. This
dependence will be denoted

u(t). (1.1)

Here, u is a scalar function (i.e. one-dimensional), but more generally, we will be considering systems
of variables

u(t) = (u1(t), u2(t), . . . , uk(t)) . (1.2)

On the board we will usually write bold symbols with an underline1 as it is easier to see, thus, u = u.

1I was once told that we use underlines to illustrate bold variables because when typesetting a document an underline
would tell the printer that that symbol needed to be bold. However, if this is true, how did the writer indicate that they
wanted a symbol underlined?

4



CHAPTER 1. INTRODUCTION 5

The values of u or u define quantities of interest. For example they could be an animal population
density, a distance or a speed. Further, t can be any variable which these quantities are dependent on.
Generally, however, we will take t to be time and we will be considering how these values temporally
evolve.

In order to link the changes in these quantities we define a system of ODEs in the most general
way possible,

F

(
t,u,

du

dt
,

d2u

dt2
, . . . ,

dnu

dtn

)
= 0, (1.3)

with initial condition given by
u(0) = u0. (1.4)

Note that the initial condition is kept general as we will usually be interested in how the dynamics of
the system change for different starting points.

Example 1.1.1 Bacteria population growth

[In this case we are only considering one population, thus, u = u and we specify u(t) to be
the population of E.Coli at time t. Initially, the population is u0 and resources are abundant,
thus, each E.Coli is able to double itself at a rate r/s. Explicitly, the population grows at a rate
proportional to the population already present, i.e.

du

dt
= ru. (1.5)

This equation can be trivially solved to give

u(t) = u0 exp(rt), (1.6)

see Figure 1.1(a).
Note instead of specifying the time at which a population takes an arbitrary value, we can

consider the more general time scale of how long does it take the population to double? Namely,
at what point, t2, is u(t2) = 2u0. Rearranging equation (1.6) we derive that

t2 =
1

r
log (2) . (1.7)

Critically, once a model is constructed and an answer is found, we must consider whether
if it is a good model or not. Clearly this model has problems because it predicts the popula-
tion will grow exponentially quickly, without bound. The key problematic assumption that we
have made is that the resources (e.g. space, nutrients, etc.) do not run out. Although this
may be a fine assumption to begin with, eventually the bacteria will be limited by competition.]



CHAPTER 1. INTRODUCTION 6

Example 1.1.2 Bacteria and nutrient populations.

[Imagine a case similar to the one above, but we introduce a nutrient population, v. We assume
that a bacterium can divide at a rate r if and only if it can interact with enough nutrient. However,
the nutrient is depleted at a rate r as the bacteria interacts with it.

Here, the equation governing this system is going to be provided. However, later on we will
learn how to write down and interpret interaction equations of the form

u+ v
r−→ 2u. (1.8)

The governing equations are

du

dt
= ruv, u(0) = u0, (1.9)

dv

dt
= −ruv, v(0) = v0. (1.10)

We notice that we can add the two equations and integrate to provide a conserved quantity,

u+ v = c. (1.11)

We can substitute equation (1.11) into equation (1.9) to get

du

dt
= ru(c− u). (1.12)

This is known as the logistic equation and we will see it many times throughout these notes, it is
a simple example of competition between species for resources.]
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[Using partial fractions, we can directly solve equation (1.12). Specifically,

du

dt
= rcu

(
1− u

c

)
,

⇒
∫ T

0

du

u(1− u/c)
=

∫ T

0

rc dt,

⇒
∫ T

0

1

u
+

1/c

1− u/c
du = rcT,

⇒
[
ln(u)− ln

(
1− u

c

)]T
0

= rcT,

⇒ ln

(
u

1− u
c

)
− ln

(
u0

1− u0

c

)
= rcT,

⇒ u(T ) =
c

1 + c−u0

u0
exp (−rcT )

, (1.13)

see Figure 1.1(b).
Comparing the models of bacteria growth, illustrated in Figure 1.1, we see that equation (1.12)

is a more realistic model for growth because there is a maximum population value which can be
supported by the experiment. This maximum value is given by c and is known as the carrying
capacity. The parameter grouping rc is also important as this control the time scale over which
this maximum is obtained.]

(a) (b)

Figure 1.1: (a) Exponential growth. Parameters are r = u0 = 0.1. See example 1.1.1. (b) Logistic
growth. Parameters are c = 10, r = u0 = 0.1. See example 1.1.2.

Example 1.1.3 Duffing’s equations.

For our last example, consider the Duffing oscillator. The equation is simply a toy example that
can be used to examine complex phenomena in a simple equation. In terms of interpretation, you
can think of the equation as modelling the displacement of a beam near two magnetics. Critically,
the beam and magnets are being forced to oscillate with amplitude γ and frequency ω (see Figure
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1.2(a)).
d2x

dt2︸ ︷︷ ︸
Acceleration

+ 2δ
dx

dt︸ ︷︷ ︸
Air resistance

+ βx+ αx3︸ ︷︷ ︸
Beam’s restorative force

= γ cos(ωt)︸ ︷︷ ︸
Forcing term

. (1.14)

We are not going to try and analytically solve or analyse Duffing’s equation. Instead, we
illustrate the dynamics that the equation produces as the amplitude of oscillation, γ, increases.
Specifically, as γ is increased the system becomes chaotic (see Figure 1.2(b)).

Definition 2. The order of a differential equation is the value of the highest derivative in the equation.

Examples 1.1.2 and 1.1.1 are both first order equations, whilst example 1.1.3 is a second order
equation. Generally (like polynomial equations of order) a differential equation of order n will have n
linearly independent solutions.

Definition 3. A system of differential equations is autonomous if the system does not explicitly
depend on the independent variable.

When the variable is time, they are also called time-invariant systems, this simply means that we
are assuming that the defined underlying laws of the system are identical to those for any point in the
past, or future.

Definition 4. To save time we use a dot or prime mark to denote a derivative with respect to the
argument, thus,

u̇(t) = u′(t) =
du

dt
. (1.15)

Traditionally, dots are primarily used when the variable is time and primes are used otherwise.
Note that higher orders derivatives are signified by the appropriate number of dots or primes. Namely,
a second derivative would be denoted by two dots or primes, etc.

Definition 5. A trajectory is a solution, u(t).

The graphs in figures 1.1 and 1.2 illustrate single trajectories of their respective systems.
In this course we are going to occupy ourselves with systems of autonomous first order equations,

of the form
du

dt
= u̇ = F (u). (1.16)

This may seem highly restrictive. However, systems of first order equations can have extremely com-
plicated properties, such as oscillations and chaos, which we will try to understand.

[Critically, equations of higher order can be written as a system of first order equations. For
example, if

G

(
u,

du

dt
,

d2u

dt2
, . . . ,

dnu

dtn

)
= 0 (1.17)

then we can define n− 1 new equations of the form v1 = du/ dt and vi = dvi−1/ dt = diu/ dti for
2 ≤ i ≤ n− 1 to produce the first order system

G

(
u,v1, . . . ,vn−1,

dvn−1

dt

)
= 0, (1.18)

du

dt
= v1, (1.19)

...

dvn−2

dt
= vn−1. (1.20)

]
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(a)

(b)

Figure 1.2: (a) Schematic diagram of the system underlying Duffing’s equation. (b) Three simulations
of equation (1.14) with increasing values of γ.
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Example 1.1.4 Duffing’s equations without forcing.

[Setting γ = 0 in Duffing’s equation and letting

v =
dx

dt
(1.21)

then we are able to convert the single second order equation seen in equation (1.2(b)) to two first
order ODEs,

dv

dt
= −2δv − (βx+ αx3) (1.22)

dx

dt
= v. (1.23)

Note that v is an apt variable name for the variable, because, as discussed in example 1.1.3, x can
be thought of as position, making v a velocity.]

Theorem 1.1.1. A solution trajectory, u(t), of equation (1.16) cannot self-intersect (see Figure 1.3).

Proof. [Suppose there is an intersection. Hence, there exist two points, t1 and t2, such that u(t1) =
u(t2) then we will also have that F (u(t1)) = F (u(t2)). However, the curves intersect, thus, the curves
must be travelling in different directions at t1 and t2 (see Figure 1.4), meaning that the derivatives are
different there, i.e. u̇(t1) 6= u̇(t2). But

u̇(t1) = F (u(t1)) = F (u(t2)) = u̇(t2), (1.24)

which produces a contradiction. Hence the curves cannot intersect.]

Figure 1.3: A solution of equation (1.16) cannot look like this.

1.1.1 Existence and uniqueness

With this being an applied mathematics course we are often very ‘fast and loose’ with our rigour.
However, it is good to know that theorems have been proven regarding the existence and unique of
solution to equation (1.16). Here we will quote the theorem in one dimension, but the theorem can be
expanded to any number of variables.
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Theorem 1.1.2. Existence-Uniqueness theorem.
Suppose the function F (u) is differentiable and the derivative, F ′(u), is continuous for all values

of u then there will exist some constant c > 0 such that

u̇ = F (u), u(t0) = u0, (1.25)

has a solution and it is guaranteed to exist and be unique in some finite time interval |t− t0| < c.

Note that:[

• we will not consider the proof here. For those who are interested look up “Picard’s theorem”.
Picard’s theorem is actually weaker than the one specified above, but theorem 1.1.2 expresses
the statement in the most useful form for us.

• in many cases solutions will exist and be unique for all time, but, the theorem hardly ever
provides an optimal value for c. However, the theorem is general enough to include cases where
‘blow up’ occurs. Namely, blow up occurs when a solution tends to infinity in finite time.

• without loss of generality we can always take t0 = 0 (why?). This is only true in autonomous
systems.

• solution curves cannot intersect, otherwise there would be two different solutions going through
the same point and there would not be uniqueness around the intersection (see Figure 1.4).

• the case for higher dimensional systems is effectively the same except we need the function

F (u) =


F1(u1, u2, u3, . . . , un)
F2(u1, u2, u3, . . . , un)

...
Fn(u1, u2, u3, . . . , un)

 (1.26)

to be continuous in all of its derivatives.

]

Figure 1.4: Two different solution curves of a one-dimensional ODE cannot intersect.

Definition 6. A differentiable function is monotonic if its derivative never changes sign. Moreover,
the function is monotonically increasing (decreasing) if the derivative is positive (negative).

Definition 7. A differentiable function is strictly monotonic if its derivative never changes sign
and is never zero.
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(a) (b) (c)

Figure 1.5: (a)[ A non-monotonic function.] (b) [A monotonic function.] (c) [A strictly monotonic
function.]

See Figure 1.5 for examples of definitions 6 and 7.

Corollary 1.1.3. Suppose F (u) is a scalar function that is continuously differentiable. The solution,
u(t), of the one dimensional ODE,

u̇ = F (u), u(t0) = u0, (1.27)

cannot oscillate. Specifically, u(t) must either be a monotonically increasing, or decreasing function.

Proof. [Suppose that u∗(t) is non-monotonic. By definition its derivative changes sign. By continuity
there is somewhere, tc, such that du∗(tc)/ dt = 0. Thus, u∗ is a solution of

u̇∗ = F (u∗), u∗(tc) = u∗c . (1.28)

Let us construct the constant function u ≡ u∗c . We note that, F (u∗(tc)) = 0 and, thus, u is also
a solution to equation (1.28). However, this means that we have two different solutions to equation
(1.28) violating theorem 1.1.2. By contradiction u∗(t) has to be monotonic.]

This means that to have oscillatory phenomena in a system either we need more than one pop-
ulation, or the system has to be non-autonomous. See example 1.1.3 for a case where both of these
factors are present and do indeed produce oscillations (and chaos).

1.2 Taylor expansions

This section is to remind you of the Taylor expansion technique. The Taylor expansion is one of the
most powerful tools for an applied mathematician because very often we want to know what happens
to a trajectory near some critical point. Although the kinetics maybe very non-linear and difficult to
understand globally we can use the Taylor expansion to simplify the dynamics in a small region around
the critical point in order to gain knowledge about the dynamics in this region.

Theorem 1.2.1. Suppose f(x) is infinitely differentiable at a point a then the Taylor series of f at a
is the power series

f(x) =

∞∑
n=0

fn(a)

n!
(x− a)n, (1.29)

which is explicitly

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · , (1.30)
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where n! denotes the factorial of n and f (n)(a) denotes the nth derivative of f evaluated at the point
a. The derivative of order zero of f is defined to be f itself and (xa)0 and 0! are both defined to be 1.

Example 1.2.5 Taylor expansions.

• exp(x) at x = 0 (see Figure 1.6). [

exp(x) = 1 + x+
1

2
x2 +

1

6
x3 +O

(
x4
)
. (1.31)

]

• cos(x) at x = 0. [

cos(x) = 1− 1

2
x2 +O

(
x4
)
. (1.32)

]

• 1/ (1 + x) at x = 0 [
1

1 + x
= 1− x+ x2 − x3 +O

(
x4
)
. (1.33)

]

• sin(x) at x = π/2. [

sin(x) = 1− 1

2

(
x− π

2

)2

+O

((
x− π

2

)4
)
. (1.34)

]

Figure 1.6: Approximating the exponential function with different orders of Taylor series.

[Although Theorem 1.2.1 is the most general form of Taylor’s theorem we are frequently going to
want to know what happens near a specific point. Namely, if x is the point of interest, what does the
function look like at x+ ε, where ε� 1. Specifically, this simply comes down to redefining x := x+ ε
and a := x in Theorem 1.2.1, namely

f(x+ ε) = f (x) + ε
d

dx
f (x) +

ε2

2

d2

dx2
f (x) +

ε3

6

d3

dx3
f (x) +O

(
ε4
)
. (1.35)
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][ Since ε� 1 we can truncate this series to obtain a good estimate after only a first term in ε,

f(x+ ε) ≈ f (x) + ε
d

dx
f (x) . (1.36)

This is known as linearisation. You are taking the (possibly complicated) function f and rewriting it
as a linear function in ε.]

Courses in the third year will deal with what information you get in the case that you truncate at
ε2, or higher. This is non-linear analysis.

1.2.1 Multivariate Taylor expansion

A similar theorem can be stated when the function f has more than one argument.

Definition 8. If f is a function of more than one variable it is called multivariate.

[Here we simply state the expansion to first order expansion that we will be concerned with through-
out the course.

f(x+ ε1, y + ε2) ≈ f(x, y) + ε1fx + ε2fy, (1.37)

where we observe that we have used a subscript fx to denote the partial derivative ∂f/∂x and similarly
for fy.]

Definition 9. For brevity we use subscripts to stand for partial derivatives,

fx1x2...xn =
∂nf

∂x1∂x2 . . . ∂xn
. (1.38)

Example 1.2.6 Multivariate Taylor expansion.

• sin(x+ y) at x = y = 0. [
sin(x+ y) ≈ x+ y. (1.39)

]

• sin(x) cos(y) at x = y = 0. [
sin(x) cos(y) ≈ x. (1.40)

]

1.3 Polar coordinates

Many phenomena that we will model will fall under the consideration of spatial movement, for example
in Chapter 2 and question sheet two we will be considering planetary movement. Critically, in many
of these cases the objects tend to move in circular trajectories orbiting a single point. Thus, it is more
natural to use polar coordinates (r, θ) to describe the motion, rather than Cartesian coordinates (x, y)
(see Figure 1.7). However, it may be easier to model the system in Cartesian coordinates. Thus, we
need to know how to convert between one set and another.

Figure 1.7 illustrates the fundamental relationships between the Cartesian and the polar coordi-
nates, namely:

x = r cos(θ), (1.41)

y = r sin(θ). (1.42)
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Figure 1.7: Cartesian and polar coordinates.

Critically, these specify x and y singly as functions (r, θ). These, in turn, can be used to construct
equations for r and θ separately as functions of (x, y), namely,

r2 = x2 + y2, (1.43)

and

θ = arctan
(y
x

)
, or θ = arccos

(
x√

x2 + y2

)
, or θ = arcsin

(
y√

x2 + y2

)
. (1.44)

where the appropriate function θ(x, y) is chosen depending on which ever is easiest to use.

Example 1.3.7 Cartesian to polar conversion.

[Suppose

ẋ = f(x, y), (1.45)

ẏ = g(x, y) (1.46)

how do we convert the system from Cartesian coordinates to polar coordinates?
First we use the condition that r2 = x2 + y2. Taking derivatives we get

2rṙ = 2xẋ+ 2yẏ. (1.47)

At which point we can exchange all Cartesian coordinates for their polar analogues, namely:

ṙ = cos(θ)f(r cos(θ), r sin(θ)) + sin(θ)g(r cos(θ), r sin(θ)). (1.48)

Next we need θ̇. Since there are multiple (equivalent) ways of representing θ there are multiple
(equivalent) forms of the derivative, here only one will be presented. Other forms follow exactly
the same procedure. We note that

ẋ = f(r cos(θ), r sin(θ)) =
d (r cos(θ))

dt
= ṙ cos(θ)− r sin(θ)θ̇. (1.49)
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][Rearranging equation (1.49) gives

θ̇ =
cos(θ)2f + sin(θ) cos(θ)g − f

r sin(θ)
, (1.50)

=
− sin(θ)f + sin(θ) cos(θ)g

r sin(θ)
, (1.51)

=
cos(θ)g − f sin(θ)

r
. (1.52)

where the arguments of f and g have been suppressed for brevity.]

In the above example we created ṙ first and then used this to produce θ̇. In following example we
show how to do the substitution all in one go.

Example 1.3.8 A quicker conversion

[From

x = r cos(θ), (1.53)

y = r sin(θ). (1.54)

we generate

ẋ = f(x, y) = ṙ cos(θ)− r sin(θ)θ̇, (1.55)

ẏ = g(x, y) = ṙ sin(θ) + r cos(θ)θ̇. (1.56)

This can be seen as a set of simultaneous equations and, thus, solved as a matrix problem(
f
g

)
=

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)(
ṙ

θ̇

)
. (1.57)

The matrix can be inverted to produce

1

r

(
r cos(θ) r sin(θ)
− sin(θ) cos(θ)

)(
f
g

)
=

(
ṙ

θ̇

)
, (1.58)

which allows us to reproduce
ṙ = cos(θ)f + sin(θ)g. (1.59)

θ̇ =
cos(θ)g − f sin(θ)

r
. (1.60)

]

Generally, nonlinear equations are not solvable however, we will see in the next example the polar
coordinates can convert nonlinearities in (x, r) to linearities in (r, θ)

Example 1.3.9 Solving ODEs in polar coordinates
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[Consider the following system

ẋ = y + x
(
1− x2 − y2

)
, (1.61)

ẏ = −x+ y
(
1− x2 − y2

)
. (1.62)

Convert to polar coordinates

ṙ =
xy + x2

(
1− x2 − y2

)
− xy + y2

(
1− x2 − y2

)
r

, (1.63)

=
(x2 + y2)

(
1− x2 − y2

)
r

, (1.64)

= r(1− r2). (1.65)

and
ẋ = y + x

(
1− x2 − y2

)
= ṙ cos(θ)− r sin(θ)θ̇, (1.66)

which implies

θ̇ =
ṙ cos(θ)− y − x

(
1− x2 − y2

)
r sin(θ)

, (1.67)

=
r(1− r2) cos(θ)− r sin(θ)− r cos(θ)(1 + r2)

r sin(θ)
, (1.68)

= −1. (1.69)

Assuming initial conditions θ(0) = 0 and r(0) = r0 > 0 we can immediately integrate to get
θ = −t and

t =

∫ r

r0

1

r′(1− r′2)
dr′, (1.70)

=

∫ r

r0

1

r′
+

1/2

1− r′
− 1/2

1 + r′
dr′, (1.71)

=

[
1

r′
+

1/2

1− r′
− 1/2

1 + r′

]r
r0

, (1.72)

= [ln(r′)− 1/2 ln(1− r′)− 1/2 ln(1 + r′)]
r
r0
, (1.73)

=

[
ln

(
r′√

1− r′2

)]r
r0

, (1.74)

= ln

(
r√

1− r2

√
1− r2

0

r0

)
, (1.75)

Rearranging this gives,

r(t) =
r0√

r2
0 + e−2t (1− r2

0)
. (1.76)

From equation (1.76) we can see that r(t) → 1 as t → ∞. Critically, we can reconstruct the
Cartesian solution by considering the polar identities. Firstly, since θ = −t the solutions spiral
at a constant rate. Note the spirals go clockwise as we normally take positive angles to be
anticlockwise. Further, any trajectory must head towards the circle r = 1.

The full dynamics are simulated in Figure 1.8 ]
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Figure 1.8: Full dynamics of equations (1.61) and (1.62).

1.4 Check list

By the end of this chapter you should be able to:

� reproduce all the definitions;

� state all theorems;

� solve simple linear ODE systems;

� prove trajectories of autonomous systems cannot cross themselves;

� prove that an ODE of one variable cannot oscillate;

� derive single variable Taylor series of any order;

� derive multivariate Taylor series up to first order;

� convert systems of ODE equations of Cartesian variables in to polar variables and back again.



Chapter 2

How to model a system

This model will be a simplification and an idealization, and consequently a falsification. It
is to be hoped that the features retained for discussion are those of greatest importance in
the present state of knowledge.

(The Chemical Basis of Morphogenesis. A. Turing 1952.)

All models are wrong, but some are useful.
(Empirical Model-Building and Response Surfaces. G. Box & N. Draper 1987.)

Modelling a system, whether it be physical, chemical, or biological, is, in some ways, more of art than
a science. You try and strip away all extraneous information and mathematically describe that which
is left. Sometimes there are physical laws to help you, e.g. gravity, conservation of energy and mass.
Other times we only have experimental intuition, e.g. predator-prey interactions from population data.
In either case, the central idea of modelling is that it should always form part of a cyclical process (see
Figure 2.1).

You try to start with physical intuition (experiment), represent the important parts mathemati-
cally (model), hopefully reproduce reality (test) and, finally, use your mathematical model to predict
unknown outcomes (predict). These prediction can then feed back into experiment and the process
begins anew.

In this chapter we are going to review some of the methods that can be used to produce a mathe-
matical interpretation of reality.

2.1 Physical laws

Definition 10. A constitutive relation (or ‘physical law’) is a rule that the modeller adds to the
system based on their experimental experience, which relates interacting components.

Physics has many laws such as: conservation of energy, general relativity and the laws of thermo-
dynamics. There is (as yet) no fundamental reason for these laws to hold. We just take them as laws
because they fit the data that we observe.

Here are just a few examples of the laws that you might come across.

• Newton’s Law of Cooling.

The rate of cooling of a body is proportional to the difference between the bodies temperature and
the temperature of its environment.

[Let T and Te be the temperatures of the object and the environment, respectively, then

Ṫ = k(Te − T ), (2.1)

where k is defined to be the heat transfer coefficient.]

19
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Figure 2.1: Diagram of the modelling cycle.

Example 2.1.10 Cooling tea

Suppose I prepare two cups of tea at exactly the same time, so initially they both start at
100oC. I quickly add enough milk to cup 1 to cool it to 90oC. Ten minutes later I add milk
to cup 2, which cools cup 2 by 10oC. Which cup is hotter at that point? [ The general
solution to equation (2.1) is

T (t) = Te + (T (0)− Te) e−kt, (2.2)

where T (0) is the initial temperature. For cup 1 we have

T1(10) = Te + (90− Te) e−k10. (2.3)

For cup 2 we have
T2(10) = Te + (100− Te) e−k10 − 10. (2.4)

Subtracting T1 from T2 gives

T1(10)− T2(10) = 10
(
1− e−k10

)
> 0. (2.5)

Since exp(0) = 1 and exp(−kt) is a strictly monotonically decreasing function of time.
Hence, cup 1 is hotter than cup 2 at time t = 10 minutes. This means that the earlier you
put your milk in the hotter your tea will stay!

Note that neither the ambient temperature, nor the heat transfer coefficient were needed.]



CHAPTER 2. HOW TO MODEL A SYSTEM 21

• Newton’s Second Law of Motion

The rate of change of momentum of a body is directly proportional to the force applied to the
body.

[This is the standard F = ma that everyone knows and loves (assuming that the mass remains
that same throughout the interaction), where the acceleration, a, is the second derivative of the
location with respect to time, a = ẍ.]

• Newton’s Law of Gravitation1

A particle attracts every other particle in the universe using a force that is directly proportional
to the product of their masses and inversely proportional to the square of the distance between
their centres.

[Suppose body i has mass mi and is at position ri = (xi, yi). Body i is then separated from body

j by a distance rij =
√

(xi − xj)2
+ (yi − yj)2

= |ri − rj |. Let G be the universal gravitational

constant then the force, Fij , acting on body i from body j is

Fij = −Gmimj

r2
ij

r̂ji, (2.6)

where

r̂ji =
ri − rj
|ri − rj |

(2.7)

is the unit vector from body j to body i.

Note that the force is vector valued quantity because it has a magnitude, but also a direction,
as it acts in the direction of the line joining the bodies.]

Figure 2.2: Schematic diagram of the three-body problem.

Example 2.1.11 Three body problem

We can combine the Second Law of Motion and the Law of Gravitation in order to predict the
position of planets interacting through their gravitational fields (see Figure 2.2). Consider
three planets with the same mass, m, and positions r1(t), r2(t) and r3(t), respectively.
Further, we note that since we are dealing with acceleration (a second order equation) we
will need to specify two initial conditions, the position and velocity. Let the initial positions

1Newton devised the laws of optics, the laws of motion and invented calculus practically on a dare... then he turned
26. What have you done today?
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be ri(0) = ri0 and the initial velocities ṙi(0) = vi0.[ The governing equations are

mr̈1 = −G m2

|r1 − r2|3
(r1 − r2)−G m2

|r1 − r3|3
(r1 − r3) , (2.8)

mr̈2 = −G m2

|r2 − r1|3
(r2 − r1)−G m2

|r2 − r3|3
(r2 − r3) , (2.9)

mr̈3 = −G m2

|r3 − r1|3
(r3 − r1)−G m2

|r3 − r2|3
(r3 − r2) . (2.10)

where we remember that this is a vector equation, ri = (xi, yi), so there are actually six,
second order ODEs here, rather than three.]

The three body problem illustrates chaotic behaviour, in the sense that the outcome is
extremely sensitive to the initial conditions. This can be seen in the simulations of Figure
2.3.

Simulation tip:

– when solving equations (2.8)-(2.10) numerically we could separate each equation into
its Cartesian components and reduce the second order equation to two first order equa-
tions. Namely, we would introduce (vix, viy) = (ẋi, ẏi). Thus, we would have a system
of twelve ODEs to solve, with variables

(x1, y1, v1x, v1y, x2, y2, v2x, v2y, x3, y3, v3x, v3y). (2.11)

However, since xi and yi are perpendicular Cartesian coordinates it turns out to be a
good idea to use complex numbers. Specifically, instead of writing two ODEs for each of
xi and yi we can simply solve one ODE in terms of the complex quantity ri = xi + Iyi,
which can be handled by numerical solvers. Thus, we simplify the numerical solution
from twelve to six equations.

• Hooke’s law

The force, F , needed to extend or compress a spring by some distance, x, scales linearly with
respect to that distance, [

F = kx. (2.12)

The constant of proportionality, k, defined by this law is known as the spring constant and is
measured in units of Force per distance, e.g. N/m.

Depending on the material Hooke’s law only holds true for small extensions and compressions.
For example, this law suggests that given enough force a spring can pass through itself. Further,
biological materials may not follow the law because they break if stretched too far (e.g. bone),
or they may grow, or permanently deform2, thus, reducing the force needed to give the same
extension (e.g. skin). ]

2.1.0.1 Pendulums

In this section we take an extended look at pendulums depending on Hooke’s law and simple Newtonian
mechanics. Specifically, we consider a spring, oscillating up and down, and a bob, oscillating side to
side (see Figure 2.4).

2Consider, for example, the ear. Small earrings to not stretch the skin very much and, thus, once the earring is
removed the skin can heal. Alternatively, people who use large gauge earrings stretch their ear holes beyond the elastic
limit of the skin so that they have a permanent hole.
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Figure 2.3: Two simulations of the three body problem. The green and red trajectories are identically
initiated. The blue trajectory is initiated at (−1, 0.01) in the left figure and at (−1, 0) in the right
figure.

[Assuming that the spring conforms to Hooke’s Law and applying Newton’s Second Law of motion
the equation of motion for the spring is

mÿ = −ky, (2.13)

where y is the vertical displacement of the spring, m is the mass attached to the spring and k is the
spring constant. The negative sign shows that the force is always directed to the resting position of the
spring (here, taken to be the origin). If the negative sign was not there then we would be saying that
the pendulums position would grow exponentially with an applied force, which is not very realistic.

The pendulum bob is slightly more complicated as we have to account for two-dimensional motion.
Complicating the matter further is that the pendulum weight is confined to move on the arc of a circle,
meaning that problem is easier to solve in polar coordinates.

To derive the equations of motion we split the component of force acting on the pendulum into
components acting along the radial and angular directions of the system, as shown in Figure 2.4(b).
Critically, we only need to consider the angular acceleration, which can be derived to be rθ̈. The
derivation will be seen on problem sheet two. Using Newton’s Second Law again we derive that

mrθ̈ = −mg sin(θ). (2.14)

One interesting point we can immediately see from equation (2.14) is that the mass of the pendulum
does not influence the solution of the equation, which can be compared with the dependence of equation
(2.13) on the mass.

Equation 2.14 can be solved directly in terms of ‘elliptic integrals’, but this accounts to little more
than integrating the equation twice and leaving the equation written in integral form. More insight
to the solution can be gained if the angle of oscillation is small. In this case we can linearise the
right-hand side of equation (2.14) by using Taylor series about zero, i.e. sin(θ) ≈ θ. Hence, equation
(2.14) can be approximated by

rθ̈ = −gθ, (2.15)
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(a) (b)

Figure 2.4: Two types of pendulums: (a) an oscillating spring. (b) a weight on a string.

which can be seen to be analogous to equation (2.13).
If the different pendulums are displaced and released from rest then the amount of error introduced

into the equation is determined by the initial displacement. Figure 2.5 compares3 equations (2.13) and
(2.14) with different initial conditions. Thus, we see that increasing the initial amplitude of the bob
pendulum causes the wave length of the oscillation to increase, or frequency of oscillation to decrease.]

Definition 11. Any system defined by an equation of the form

ü = −k2u. (2.16)

is said to under go simple harmonic motion.

Equation 2.16 can be solved to produce the solution

u = A cos(kt) +B sin(kt), (2.17)

where A and B are specified through the initial conditions.

3Comparing y and θ is a little dodgy as y is a dimensional length and the θ is dimensionless, as we work in radians.
However, if this bothers you we can fix this is in either of two ways. Either, we consider y normalised by its natural
length (taken here to be of unit length, regardless of the dimensions involved), or, we can consider Figure 2.5 comparing
equation (2.14) and its approximation in equation (2.15).
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(a) (b)

Figure 2.5: Comparing equations (2.13) and (2.14) with initial conditions (a) y = 0.1 = θ and (b)
y = 1 = θ. Parameter values r = g = k = m = 1.

2.2 Law of Mass Action

All of the above physical laws are very specific in their application. In this section we will learn about
a much more general technique that will allow us to build an ODE system out of multiple interacting
populations. These populations could represent chemical compounds, humans, cells or animals as well
as different states within a population i.e. infected humans and susceptible humans. The law presented
in this section is applied whenever the populations of the system are able to: (i) change identities;
(ii) create more population members; or (iii) cause populations to decay. Specific examples of each
of these interactions are, respectively: (i) susceptible humans becoming infected through interactions
with a diseased person; (ii) animals giving birth; (iii) predators eating prey. Note that a change-of-
identity interaction can itself be thought as a combination of creation and degradation operations.
For example, in the above case of infection a member of the susceptible human population is removed
from the system, whilst an infected human is added to the system. Thus, all interactions can be made
through combining creation and degradation operations.

We use chemical reaction notation to specify the outcomes of population interactions. Consider
a system composed of n different interacting populations (u1, . . . , un). We assume that all interac-
tions between the population elements lead to the creation, or destruction, of one (or more) of the n
populations.

Definition 12. A rate equation specifies that an interaction involves a1 members of population u1,
a2 members of population u2, etc. and produces b1 members of population u1, b2 members of population
u2, etc. The equation is written as

a1u1 + a2u2 + · · ·+ anun
r→ b1u1 + b2u2 + · · ·+ bnun, (2.18)

where r > 0 is the reaction rate.

Note that some of the ai and bi values can be zero.

Example 2.2.12 Reaction equation examples

• Birth
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Two agents of population u come together to produce a third, [

2u
r→ 3u. (2.19)

]

• Death

An agent of population u dies (or is destroyed) due to natural causes, [

u
r→ /0. (2.20)

]

• Predation

A predator population, v, converts energy from eating prey, u, into offspring, [

u+ v
r→ 2v. (2.21)

]

• Infection

Consider a population of infected people, I, who are able to infect a susceptible population,
S. Further, over time, the infected people recover and become susceptible again, [

I + S
r1→ 2I, (2.22)

I
r2→ S. (2.23)

]

Rate equations provide a rigorous way of defining all of the interactions a system is assumed to
undergo. However, we still require a method of converting the rate equation into an ODE. This is the
power of the Law of Mass Action.

Definition 13. The Law of Mass Action states that production rate of a reaction is directly pro-
portional to the product population sizes. Specifically, if

a1u1 + a2u2 + · · ·+ anun
r→ b1u1 + b2u2 + · · ·+ bnun

is the reaction of interest then the production rate is

rua1
1 ua2

2 . . . uan
n (2.24)

and the accompanying ODEs are

u̇1 = (b1 − a1)rua1
1 ua2

2 . . . uan
n , (2.25)

u̇2 = (b2 − a2)rua1
1 ua2

2 . . . uan
n , (2.26)

... (2.27)

u̇n = (bn − an)rua1
1 ua2

2 . . . uan
n . (2.28)

Note that in converting from reaction equation to the ODE of ui we to account for the stoichiometry,
i.e. (ai− bi). Further, when multiple reactions are considered, the terms arising from the Law of Mass
Action are simply added together as independent terms.
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Example 2.2.13 Law of Mass Action examples

• Birth [

2u
r→ 3u,

=⇒ u̇ = ru2. (2.29)

]

• Death [

u
r→ /0,

=⇒ u̇ = −ru. (2.30)

]

• Predation [

u+ v
r→ 2v,

=⇒ u̇ = −ruv, (2.31)

v̇ = ruv. (2.32)

]

• Infection [

I + S
r1→ 2I, I

r2→ S,

=⇒ Ṡ = −r1IS + r2I, (2.33)

İ = r1IS − r2I. (2.34)

]

Example 2.2.14 Zombies

Humans, H, and zombies, Z, interact through the following three interactions (see Figure 2.6):

1. humans kill zombies at a rate a;

2. zombies kill humans at a rate b;

3. zombies infect humans at a rate c.

The reaction equations for this system are, [

H + Z
a→ H; (2.35)

H + Z
b→ Z; (2.36)

H + Z
c→ 2Z. (2.37)
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][The ODE form of the system is

Ḣ = −bHZ − cHZ = −αHZ (2.38)

Ż = −aHZ + cHZ = βHZ. (2.39)

Since α = b+ c > 0 the population of H is always decreasing. However, β = c−a, which could be
either positive or negative. Critically, if β > 0 =⇒ c > a then the zombie population will grow.
Alternatively, if β < 0 =⇒ c < a then the zombie population decreases. Thus, the survival of the
human race all depends on the sign of c−a, which, explicitly, is the ‘net rate increase of zombies’,
i.e. zombie production minus zombie destruction.]

Figure 2.6: Possible outcomes of human-zombie interactions.

2.3 Check list

By the end of this chapter you should be able to:

� define all of the constitutive laws;

� solve problems involving Newton’s laws, Hooke’s law and simple harmonic motion;

� convert a system of population interactions into reaction equations;

� convert reaction equations into ODEs using the Law of Mass Action.



Chapter 3

Non-dimensionalisation

In metric, one milliliter of water occupies one cubic centimeter, weighs one gram, and
requires one calorie of energy to heat up by one degree centigrade which is 1 percent of the
difference between its freezing point and its boiling point. An amount of hydrogen weighing
the same amount has exactly one mole of atoms in it. Whereas in the [imperial] system,
the answer to “How much energy does it take to boil a room-temperature gallon of water?”
is “Go fuck yourself”, because you can’t directly relate any of those quantities.

(Wild Thing. J. Bazell 2013.)

Thus, far we have been fairly lax about defining the quantities we have actually been measuring.
Further, once we have specified what the quantity actually is, what units are we using to measure
the quantity. For example, if we are measuring distance are we doing it in mm, miles or light-years?
Equally, is time measured in seconds, minutes or hours? Finally, constitutive laws often introduce
parameters that are not quantified accurately, or alternatively, we may be interested in understanding
how a solution depends on a particular parameter as it is varied.

The Law of Mass Action, in particular, could be thought to be a troublesome law as it introduces
a rate parameter for each reaction equation that is considered. For example, if a system of ODEs is
defined by a set of non-linear equations it is highly unlikely to be solvable in closed form. Thus, if
there are a large number of parameters in the system, it becomes very difficult to predict how varying
a single parameter (or group of parameters) will influence the solution.

However, we have already seen cases in which we do not need to consider parameters individually,
as specific groups of the parameters are seen to act in the same way. For example, in the case of the
spring pendulum (see Section 2.1.0.1), we saw that the frequency of oscillation depended on

√
k/m.

Thus, stiffening the spring (increasing k) has the same effect on the solution as decreasing the mass
(decreasing m), i.e. they both increase the frequency of the oscillations. Equally, in the example of a
zombie infection (see example 2.2.14), the parameters of interest were not a, b or c, but rather α = b+c
and β = c− a.

In this chapter we introduce a technique, called non-dimensionalisation, that will benefit us in two
ways. Firstly, it allow us to brush away worries about dealing with units and, secondly, it will allow
us to reduce the number of effective parameters in our system. Specifically, we will be able to define
parameter groupings that will influence the final result in the same way.

3.1 The central idea

To non-dimensionalise a system of equations, we have the following rules:

1. Identify all the variables;

2. Replace each variable with a quantity scaled relative to a characteristic unit of measure (to be

29
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determined);

3. Choose the definition of the characteristic unit for each variable;

4. Rewrite the system of equations in terms of the new dimensionless quantities.

We note three particular points about these rules. Firstly, the theory behind non-dimensionalisation
is straight forward. Namely, we substitute scaled variables into an equation system and massage the
equations until we have rearranged the system to produce the desired outcome. However, in practice
the difficulty of the technique lies in the algebraic manipulation; it is very easy for the terms to become
lost during the manipulation. Thus, care must be taken during the algebraic manipulation stage.

Secondly, you will notice the word ‘choose’ in point 3. This means that it possible to construct many
different non-dimensionalised systems from the same system of equations, i.e. non-dimensionalisation
is non-unique. We usually choose the characteristic unit of each variable to either emphasise one of
the terms in a system or to remove as many parameters as possible.

Finally, this technique is hard to demonstrate in generality. It is much better to consider a number
of system and see how the technique works in action. Thus, what follows will be a select number of
examples, which along with your problem sheets should give you a good basis in the theory. However,
do not think that these are all the examples you could face.

It should be noted that there is little consistency in nomenclature across book when considering
the separation of variables into their dimensional and non-dimensional components. Thus, always be
clear in your definitions.

3.1.1 Examples of non-dimensionalisation through substitution of variables

Example 3.1.15 Substituting variables

• Consider the equation for exponential growth,

u̇ = ru, u(0) = u0. (3.1)

[The variables in equation (3.1) are u and t. We rewrite them as u = [u]u′ and t = [t]t′,
where [u] and [t] are the dimensional scales and u′ and t′ are the non-dimensional variables.
We are free to define the values of [u] and [t] as we please. It is our job to choose appropriate
definitions that simplify equation (3.1). Critically, although we are free to choose the value
of [u] and [t] the values must have consistent units. Namely, [t] must have units of time and
[u] must have units of density.

We substitute the expanded variables into equation (3.1) and rearrange to produce

du′

dt′
= [t]ru′, u(0) =

u0

[u]
.

Hence, we see that if we choose [t] = 1/r and [u] = u0 then equation (3.1) simplifies to

u̇ = u, u(0) = 1,

where we note that we have dropped the prime symbols, ′, for notational convenience.

For mathematicians dropping primes is often done as the last step because we infrequently
care about the actual values of the variables, rather we study the dynamics available in the
equation. However, in any specific application we should be careful to remember that the
variables we are dealing with are non-dimensional and that the solution is not complete until
we ‘re-dimensionalise’ the variables.]
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[In this example we see that the values of r and u0 in equation (3.1) do not influence the
dynamics of the simulation. Specifically, they only scale the time and initial condition.

Although this was a fairly trivial example, a good way to check consistency of the answer at
the end of the manipulation is to check that all of the dimensions agree. As mentioned [t]
should have units of time and [u] should have units of density. We return to equation (3.1)
and consider the dimensions of each component.

For example, u̇ = du/ dt has units of density/time. By equality, ru must have units of
density/time since u has units of density then r must have units of 1/time. Thus,

dim([t]) = dim(1/r) = time.

Equally, [u] = u0 can trivially be seen to have the correct units of density.]

• Consider the equation for logistic growth,

u̇ = ru
(

1− u

K

)
, u(0) = u0. (3.2)

[Again, u = [u]u′ and t = [t]t′ can be substituted into equation (3.2) to produce

du′

dt′
= [t]ru′

(
1− [u]

K
u′
)
, u′(0) =

u0

[u]
,

from which we see that it would be wise to once again take [t] = 1/r. Beyond this we
see that we have a choice. Should we take [u] = K, or [u] = u0? Both are valid non-
dimensionalisations and either maybe be appropriate depending on the context of the prob-
lem.

Here, we are going to take [u] = K as we are interested in the dynamics of the system, rather
than the initial condition. Thus, after dropping primes we see that we can non-dimensionalise
equation (3.2) to

du

dt
= u (1− u) , u(0) = U0,

where U0 = u0/[u] = u0/K.

In this case the non-dimensionalisation demonstrates that the only parameter that the so-
lution depends on is the initial conditions. Changing r does not change the dynamics of the
system, it only changes the time scale, since r = 1/[t]. Equally, changing K simply scales
the size of the solution, as u = Ku′.]

• Consider the following equations (the Schnakenberg kinetics)

u̇ = k1 − k2u+ k3u
2v, u(0) = u0, (3.3)

v̇ = k4 − k3u
2v, v(0) = v0. (3.4)

[This time we use the scales u = [u]u′, v = [v]v′, t = [t]t′ to derive

du′

dt′
=

[t]k1

[u]
− [t]k2u

′ + [t]k3[u][v]u′2v′, u′(0) =
u0

[u]
,

dv′

dt′
=

[t]k4

[v]
− [t]k3[u]2u′2v′, v′(0) =

v0

[v]
.
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][ Lots of potential choices for scale balances; how do we choose? In an exam you will be
given the form of an equation to produce and your task will be to derive the corresponding
scales. For example, suppose we wanted to convert equations (3.3) and (3.4) into

du′

dt′
= α− u′ + u′2v′, u′(0) = u′0

dv′

dt′
= β − u′2v′, v′(0) = v′0,

then we know that we would have to set

1 = [t]k3[u][v] = [t]k2 = [t]k3[u]2.

Thus,

[t] =
1

k2
,

[u] =

√
1

[t]k3
=

√
k2

k3
,

[v] = [u] =

√
k2

k3
,

which means that

α =
[t]k1

[u]
=
k1

k2

√
k3

k2
,

β =
[t]k4

[v]
=
k4

k2

√
k3

k2
,

u′0 =
u0

[u]
= u0

√
k3

k2
,

v′0 =
v0

[v]
= v0

√
k3

k2
.

Finally, we check the consistency of the scales. From equations (3.3) and (3.4) we infer that

dim(k1) =
density

time
, dim(k2) =

1

time
, dim(k3) =

1

density2time
, dim(k4) =

density

time
.

Hence,

dim([u]) =

√
1/time

1/(density2time)
=

√
density2 = density. (3.5)

The scales [v] and [t] can be checked similarly. We also need to ensure the the variables
α, β, u′0, v

′
0 are have no dimension. For example

dim(v′0) = density

√
1/(density2time)

1/time
= density

√
1

density2 = 1. (3.6)

The other variables can be checked similarly.]
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3.1.2 Examples of non-dimensionalisation through the arrow method

The substitution method shown in Section 3.1.1 will always work supposing that the algebra is manip-
ulated correctly. However, the method can be cumbersome and slow. Moreover, because it involves
lots of algebraic manipulations there are many chances to make a mistake.

An alternative method rests on using arrows to identify the desired balances. This can be much
quicker as the initial stages do not require laborious substitution. However, we have to be more careful
because not all balances that we can ‘draw’ using the arrows will be valid.

The idea behind the arrow method is that you draw arrows between the quantities that are go-
ing to ‘balance’, which simply means they are going to have the same coefficient in the final non-
dimensionalised form. The process is generally the same as the substitution method. However, we
must remember that in order to specify the problem completely the number of valid arrow balances
must equal the number of variables. For example, if a problem depends on u and t we would need two
balances. Alternatively, if the problem depended on u, v, and t we would need three valid balances.
This section is going to depend primarily on examples, again, and we will see an invalid balance at the
end of the demonstrations.

Example 3.1.16 Arrow method

Consider the following equation

u̇ = k0 + k1u+ k2u
2, u(0) = u0. (3.7)

[We have two variables, u and t, and so we need two balances. Specifically, the arrows state that
we want to balance the derivative, linear and quadratic terms,

[u]

[t]
= k1[u] = k2[u]2,

from which it is simple to discover that

[t] =
1

k1
, [u] =

k1

k2
.

We still need to substitute the scales into the equations. Namely, u = u′k1/k2 and t = t′/k1, but
again the arrow method simplifies this task. Specifically, we know that, by design, the coefficient
of the derivative, linear and quadratic term are going to be the same. Thus, we can divide through
by one of them to speed up the derivation,

du′

dt′
=

k0

k1[u]
+ u′ + u′2.

Finally, redefining the last parameter as α = k0/(k1[u]) = k0k2/(k
2
1) and the initial condition

u′(0) = k2u0/k1 = u′0, we can non-dimensionalise equation (3.7) to the final form of

u̇ = α+ u+ u2, u(0) = u′0, (3.8)

where we have dropped the primes from the variables for simplicity. Once again, we would have to
ensure that α and u′0 where non-dimensional and that [u] and [t] had the right dimensions, but this
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][is left as an exercise. ][ In this example we can illustrate the power of the non-dimensionalisation
through the parameter groupings

α =
k0k2

k2
1

, u′0 =
k2u0

k1
.

Specifically, suppose we double each of the kinetic parameters i.e. k0 7→ 2k0, k1 7→ 2k1 and
k2 7→ 2k2 then neither α, nor u′0 changes. This means that under this transformation the solution
of equation (3.8) is exactly the same. But, how does this transformation of the original equations?
Well, [u] = k1/k2 does not change, but [t] = 1/(2k1) will be half its previous value. Hence, the
solution to this ‘doubled-parameter’ problem (call it u2(t)) will reach the same solution values as
the original problem, but in half the time (see Figure 3.1),

u2(t) = u

(
t

2

)
. (3.9)

]

Figure 3.1: Two simulations of equation (3.7) with parameter values k0 = k1 = k2 = 1 (blue line,
u(t)) and k0 = k1 = k2 = 2 (red line, u2(t)). Illustrating that the evolution of the red line is the same
as the blue line, except that the red line evolution occurs twice as fast, as predicted by equation (3.9).

Example 3.1.17 Non-uniqueness

To illustrate the non-uniqueness of non-dimensionalisation we rerun example 3.1.16 but this time
we balance the time derivative, the constant term and the initial condition,

u̇ = k0 + k1u+ k2u
2, u(0) = u0. (3.10)

[We quickly find that
[u]

[t]
= k0, [u] = u0,

thus, [t] = u0/k0. We can divide the equation through by k0, because we know that this is the
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][balance of the first two terms in equation (3.10). Thus, we derive

u̇′ = 1 +
k1[u]

k0
u′ +

k2[u]2

k0
u′2, u′(0) = 1,

which would be rewritten as

u̇ = 1 + βu+ γu2, u(0) = 1, (3.11)

where

β =
k1u0

k0
, γ =

k2u
2
0

k0
.

]

Both forms of the non-dimensionalised equation, (3.8) and (3.11), are perfectly valid. The most
useful form will depend on what factor dominates the equation. If k0 is small and k1 is big (relative to
one another) then equation (3.8) would be more useful as α ≈ 0 and we would be able to manipulate
the equation to provide more information. Alternatively, if k0 was big and k2, or k1, was small then,
equation (3.11) would be more useful as we would, again, be able to remove one of the constants based
on this assumption.

Example 3.1.18 Failure

As mentioned not all balances are valid, which is what we will be seen in this example. Consider
the following ODE system

u̇ = k0 + k1u− k2uv, u(0) = u0, (3.12)

v̇ = k3 + k4v − k2uv, v(0) = v0. (3.13)

[There are three variables u, v and t and so we need three balances. The chosen balances are
illustrated on the equations using arrows. Extracting information from the balances we find that

[u]

[t]
= k0 = k1[u],

[v]

[t]
= k4[v]. (3.14)

From this point we quickly discover that

[t] =
1

k1
and [t] =

1

k4
. (3.15)

Since, generally, k1 6= k4 we cannot satisfy both balances, thus, we must consider a different
non-dimensionalisation.]

One possible valid non-dimensionalisation is

u̇ = k0 + k1u− k2uv, u(0) = u0,

v̇ = k3 + k4v − k2uv, v(0) = v0.

See the board for details.

Although each case of non-dimensionalisation is different, the algorithm you should follow is the
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same in each case. The steps are:

1. write down the variables in the equations, this tells you how many balances you need;

2. specify balances and check that they are valid;

3. define non-dimensional scales that allow you to minimise the number of free parameters;

4. substitute the scales into the equations and collect together the remaining parameters into the
smallest possible groups and give them a new variable name (DO NOT FORGET to do the same
thing for the initial conditions. Everyone always forgets to do the initial conditions);

5. demonstrate that the scales you have derived have the correct dimension;

6. demonstrate that the new parameter groupings are dimensionless.

Although we have not completed the last two points for every example, you will be expected to do
every step in an exam.

3.2 Check list

By the end of this chapter you should be able to:

� non-dimensionalise a system of equations using direct substitution, or the arrow method;

� demonstrate that the derived scales have the correct dimension;

� demonstrate that remaining parameter groupings are non-dimensional;



Chapter 4

Stationary states and stability

Now that we are able to model and simplify a physical system, we want to predict what the equations
will do without having to simulate the system each time. Specifically, we are not interested in the
transient initial behaviour of the equations, we want to understand what the trajectories will like
far into the future. In one dimension we have proven that the equations must either monotonically
increase, decrease, or tend to a fixed value. In two-dimensions we have the additional complications of
persistent oscillatory dynamics. In higher dimensions we have the further option of chaotic systems,
which are outside the scope of this course. However, even by restricting ourselves to one and two
dimensions, how do we know what will happen? To enable us to generate these insights we first need
two important definitions.

Definition 14. A state, us, is a steady state or stationary state of the ODE system

u̇ = F (u) (4.1)

if is satisfies F (us) = 0.

This definition simply states that if the ODE system ever reaches us then the system will not
evolve further because all of the dynamics are in equilibrium. This is a useful concept, but currently
incomplete.

For example, you can (theoretically) stand a pencil on its tip and it would remain stationary, if
it were not perturbed (see Figure 4.1). Hence, this is a stationary state orientation of the pencil.
However, it would require only a very small perturbation to cause the coin to fall over and, thus,
transition from the state of being on its point to being on its side (see Figure 4.1). Given a large
enough perturbation (i.e. picking the pencil up) you could reset the pencil to the previous state of
standing on its point. However, it requires a larger perturbation to reset the pencil than it does to
knock it over and, so, we see that although these state are both stationary states they are somehow
fundamentally different. This difference comes down to the intuitive concept of ‘stability’.

Definition 15. A steady state, us, of the ODE system

u̇ = F (u) (4.2)

is stable if for all ε > 0, there exists a δ > 0 and a t0 > 0 such that whenever |u(t) − us| < δ then
|u(t)− us| < ε for all t ≥ t0. Otherwise the steady state is unstable

Simply put, this means that a state, us, is stable if whenever a solution u(t) comes close enough to
it then the solution tends to the state i.e. u(t)→ us. In the example of the pencil, both the vertical
and horizontal orientations of the pencil are stationary state. However, only the horizontal orientation
is stable.

37
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Figure 4.1: Stationary states of a pencil.

Example 4.0.19 Balls on surfaces

Consider Figure 4.2, using your intuition, state which of the balls are stationary and which are
stable, assuming that the surface that they are moving on has a small amount of friction. [

(a) Stationary and stable. This ball is ‘globally ’ stable, namely, no matter how big a perturbation
is given, the ball will always end up at the bottom of the well. Note, that if the surface had
no friction the ball wall oscillate to and fro forever.

(b) Stationary and unstable. The surface is only flat at one point, thus, any perturbation will
cause the ball to slide away from the central point.

(c) Non-stationary and, thus, cannot be categorised as stable, or unstable. The surface is not
locally flat anywhere, so the ball simply keeps moving.

(d) Stationary and stable. However, this ball is only ‘locally ’ stable (compare with (a)). A big
enough perturbation will cause the ball to exist the stability region and not return back to
the stationary state.

(e) Stationary and unstable. This case is similar to (b).

]

Moving beyond the case of categorising drawings let us consider the specific mathematical example
of the logistic equation.

Example 4.0.20 Stationary states and stability of the logistic equation

The non-dimensionalised logistic equation is (as we have seen before)

u̇ = u(1− u). (4.3)

[Firstly, we calculate the steady states by setting u̇ = 0. Trivially, we can see that the steady
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Figure 4.2: Which balls are stationary and stable?

][are u = 0 and 1. Later, we will see how to derive the stability of a general system analytically.
Here, we will develop our curve sketching techniques, specifically, plot equation (4.3) in the (u, u̇)
coordinate plane (see Figure 4.3(a)).

In the top half plane u̇ > 0 and, thus, u increases over time. Equally, in the bottom half
plane u̇ < 0 and u decreases over time. Drawing arrows on Figure 4.3(a) to illustrate these
facts demonstrates that u = 0 is unstable as trajectories diverge away from it, whilst u = 1 is
stable as trajectories tend to this state. The insights gained from Figure 4.3(a) are confirmed in
Figure 4.3(b), where, from simulating multiple initial conditions, we see that any small (positive)
perturbation away from zero causes the solution to converge to u = 1, eventually. Equally, any
initial condition u > 1 decreases monotonically towards u = 1, too.]

(a) (b)

Figure 4.3: Illustrating the stationary states and stability characteristics of the logistic equation (4.3).
(a) A plot of the curve in (u, u̇) coordinates. (b) Multiple simulations of equation (4.3) with different
initial conditions, u0, noted in the legend.

As we saw in example 4.0.20, when working with a single dependent variable, u, all of the stationary and
stability information can be gained from plotting the ‘phase plane’, i.e. the (u, u̇) coordinate system.
Specifically, the stationary states are given where the curve crosses the ‘x-axis’ (i.e. u̇ = 0) and the
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stability of the states can be given by considering where the the system is increasing or decreasing in
the vicinity of the stationary point (i.e. the sign of u̇).

However, drawings can be misleading and may not be possible if the function on the right-hand
side of the differential equation is too complicated. Equally, drawing the curve will not work if the
system has more than one variable. Thus, we need an analytical method to characterise the stability
of a system, which can be generalised to higher order systems.

4.1 Linear stability

The crux of this method is to consider the dynamics of an ODE system near its stationary points.
To do this we substitute a solution into the equations that is a perturbation about the steady state.
Using Taylor series we expand the system in terms of the perturbation and keep only the linear terms
as we are assuming that the perturbation is small. Since the system is now linear we can solve the
approximate equations completely and, thus, they will tell us what dynamics to expect close to the
steady states.

Theorem 4.1.1. Suppose us is a steady state of the one dimensional ODE,

u̇ = F (u), (4.4)

then us is linearly stable if dF (us)/ du < 0 and linearly unstable if dF (us)/ du > 0.

Proof. [Consider a solution of the form u(t) = us + ε(t), where |ε(0)| � 1. Substituting the perturbed
solution into equation (4.4), we find that

ε̇ = F (us + ε). (4.5)

We now use Taylor’s theorem on the right-hand side to derive the approximation

F (us + ε) ≈ F (us) + ε
dF

du
(us) +

ε2

2

d2F

du2
(us) + . . . . (4.6)

Ignoring all terms except the linear order in ε we conclude that initially

ε̇ ≈ F (us) + ε
dF

du
(us). (4.7)

By assumption us is a stationary point and, thus, by definition, F (us) = 0. Hence, approximately,

ε̇ = ε
dF

du
(us). (4.8)

Equation (4.8) is trivially solvable since dF (us)/ du is a constant,

ε(t) = ε(0) exp

(
t

dF

du
(us)

)
. (4.9)

The exponential solution form tells us that if dF (us)/ du < 0 then ε(t) → 0 as t → ∞. This means
that our small perturbation dies out over time and the solution u(t) → us as t → ∞. In other words
us is stable because solutions that are slightly perturbed away from us tend to evolve back to us.

Oppositely, if dF (us)/ du > 0 then ε(t) → ∞ as t → ∞. Thus, the solution diverges away from
us meaning that us is unstable.]

We make a number of remarks about the theorem’s statement and proof: [

• the theorem makes no claim about the solutions properties in the case that the first derivative
dF (us)/ du = 0. In this specific case we would have to go to higher order in the Taylor

expansion.
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• the proof does not specify the size of ε, thus, the steady state may be globally stable, in that all
trajectories tend to us. However, the proof only assures us of the local stability.

• in the case that us is unstable we cannot conclude what happens to the trajectory. Specifically,
although ε will grow exponentially, this simply means that our approximation of small ε is no
longer valid. Indeed, a trajectory near an unstable point may grow without bound or, simply
tend to one of the other stationary states in the system that are stable.

]

Example 4.1.21 Linearising around multiple steady states

Consider the following equation, which can be used to model harvesting, with constant effort,
E > 0, of a population, u,

u̇ = f(u) =
2u2

u2 + 1︸ ︷︷ ︸
Population growth with saturating rate

− Eu︸︷︷︸
Constant harvesting effort

. (4.10)

[The steady states are solutions to

0 = f(u) =
2u2

u2 + 1
− Eu, (4.11)

and, so,

us = 0,
1±
√

1− E2

E
. (4.12)

Name these states u0, u− and u+ in the obvious way. Since we are dealing with a real system we
must ensure that the steady states are also real. Namely, the states u± only exist when 0 < E ≤ 1;
if E > 1 only u0 exists. Finally, u± > 0 for all values of 0 < E ≤ 1.

Now let us consider the derivative of f in order to prescribe stability

f ′(u) =
4u(u2 + 1)− 4u3

(u2 + 1)2
− E (4.13)

=
4u

(u2 + 1)2
− E. (4.14)

We now check each steady state separately. Since

f ′(0) = −E < 0 (4.15)

we immediately conclude that u0 is a linearly stable stationary state. Similarly,

f ′(u+) =
E
(
(E2 − 2)

√
1− E2 + 2(E2 − 1)

)(
1 +
√

1− E2
)2 . (4.16)

Thus, we have to contend with showing whether f ′(u+) is positive, or negative, and how that

depends on E. Firstly, we note that
(
1 +
√
−E2 + 1

)2
is always positive, so it is only the numerator

that could change sign. Equally, by definition u+ only exists if 0 < E < 1, thus we can also
eliminate the factor of E at the front of the equation. Hence, we reduce the stability problem to
determining the sign of

(E2 − 2)
√

1− E2 + 2
(
E2 − 1

)
. (4.17)
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] [Since 0 < E < 1 then both (E2 − 2) and (E2 − 1) are negative, hence f ′(u+) < 0, and, so, u+

is stable. Similarly

f ′(u−) =

(
(2− E2)

√
1− E2 + 2(E2 − 1)

)
E(

−1 +
√
E2 − 1

)2 . (4.18)

Unfortunately, this case is not so clear cut, because
(
2− E2

)
> 0, but (E2 − 1) < 0. We could

continue investigating the properties of the curve

(2− E2)
√

1− E2 + 2(E2 − 1), (4.19)

but this is not so easy. Instead, we consider f ′(u−) without substituting in the value of equation
(4.12). Further, we note that by rearranging equation (4.11) u− is a solution of

0 = 2u− − E(u2
− + 1) =⇒ 2u−

E
= (u2

− + 1). (4.20)

Thus,

f ′(u−) =
4u−

(u2
− + 1)2

− E, (4.21)

=
E2

u−
− E, (4.22)

=
E

u−
(E − u−) . (4.23)

As mentioned above u− > 0, thus, the sign of f ′(u−) depends solely on the sign of

E − u− = E − 1−
√

1− E2

E
, (4.24)

=
−(1− E2) +

√
1− E2

E
, (4.25)

=
−a+

√
a

E
, (4.26)

where, in the last line we have defined a = 1 − E2. Now, since 0 < E < 1 then 0 < a < 1, and,
so, a <

√
a, hence E − u− > 0, resulting in the discovery that f ′(u−) > 0 for all E, meaning that

u− is unstable.
In summary u0 is always stable. The steady states u± only exist when 0 < E < 1 and whenever

they do exist u+ is linearly stable, whilst u− is unstable.
Of course, we could have seen this much easier if we had simply plotted f(u) as shown in

Figure 4.4. Figure 4.4 also provides us with the information of which initial conditions will go to
which steady state. Specifically, in the case that 0 < E < 1, if u(0) < u− then the population will
tend to zero, whilst if u(0) > u− the population will tend to u+. Equally, we see that in the case
when E > 1 all populations tend to zero.

Although, the graphical method is easier to use in this case, we may have missed certain cases
if we had just drawn one graph. Equally, we have the explicit existence bounds on u±. Finally,
the derivative method presented in Theorem 4.1.1 is more easily extended to higher dimensions,
as we will see later.

The interpretation of these results provide serious implications on the viability of a harvested
population. Namely, if we are greedy and harvest too much of the population (E > 1) then
][the population will go extinct. Moreover, even if 0 < E < 1 and, so, sustainable harvesting is
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][possible, we still have to ensure that the population is large enough to take the impact. Namely,
since u0 is stable, then a small population will die out, no matter how small the harvesting effort is.
Critically, only in the no harvesting case E = 0 are we guaranteed to have a surviving population.]

(a) E = 0.9 (b) E = 0.9

(c) E = 1.1 (d) E = 1.1

Figure 4.4: Illustrating the stationary states and stability characteristics of equation (4.10). Top
row: case when E = 0.9 and three steady states exist. (a) A plot of the curve in (u, u̇) coordinates.
(b) Multiple simulations of equation (4.10) with different initial conditions, u0, noted in the legend.
Bottom row: case when E = 1.1 and only u0 = 0 is a stationary state. (a) A plot of the curve in (u, u̇)
coordinates. (b) Multiple simulations of equation (4.10) with different initial conditions, u0, noted in
the legend.

4.2 Bifurcations and hysteresis

As seen in example 4.1.21 the existence and stability of steady states can depend on model parameters,
here E.

Definition 16. A bifurcation point of a system is a point at which the characteristics of the steady
states change. This can be either in number of steady states, or their stability.

In example 4.1.21, E = 1 is a bifurcation point of the system.
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The amount of information gained in example 4.1.21 can be quite overwhelming. Thus, we use a
bifurcation diagram to illustrate the complexity in a simple way. Specifically, Figure 4.5 shows equation
(4.12) as a function of E and captures the following features:

• u0 always exists;

• u± exists whenever E < 1;

• u0 and u+ are stable when they exist;

• u− is always unstable when it exists.

Figure 4.5 can also be used to tell us what happens in the case when we think about varying E and
how it can have unexpected impacts on the system. Consider the case where we are happily fishing
in a lake, which can be modelled by equation (4.10), such that E = 0.7 and, so the level of fish in the
lake is stable at around u+(0.7) ≈ 2 (taken from Figure 4.51).

Suppose we become greedy and increase our effort, thus pushing E to 1.1. The population begins
to die out rapidly, due to over fishing. Critically, we notice the huge reduction in population size and
reduce our effort to the previous stable case, E = 0. Unfortunately, we have left it too late and the
population has reduced past u−(0.7), thus, even though a fish population still exists and our harvesting
rate E < 1, the population will still die. This is an example of hysteresis.

Figure 4.5: Bifurcation plot of equation (4.10). The dependence of the existence and stability of u0,
u− and u+ on E is plotted. The u− is dashed to illustrate that the steady states are always unstable,
whilst u0 and u+ are stable wherever they exist. However, the steady states, u±, disappear for E > 1.

Definition 17. A system exhibits hysteresis if, when a parameter of the system is altered and sub-
sequently returned to the initial value, the system does not return to its original state.

Example 4.1.21 and Figure 4.5 demonstrate a simple way showing a system exhibits hysteresis.
Specifically, you should:

1We are assuming that the system is non-dimensionalised, so I am not saying this is two fish, or two tons, just a
measure of two times some scale.
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1. derive the steady states and their dependence on any given parameters;

2. derive the stability of the steady states and their dependence on any given parameters;

3. note any bifurcation points of the parameters;

4. define and illustrate the characteristics of the system before and after the bifurcation point;

5. consider the system before the bifurcation point;

6. identify what happens to the system as the bifurcation increases passes its bifurcation point;

7. identify what happens to the system as the bifurcation is reduced to its initial value;

8. if the system state in point 5 is the same as 7 then the system does not exhibit hysteresis.
Otherwise hysteresis is present in the system.

4.3 Check list

By the end of this chapter you should be able to:

� derive the steady states of a system;

� categorise the stability of the steady states using graphical means;

� prove that the stability of a steady state depends on the sign of the first derivative (with respect
the system variable) evaluated at the steady state;

� analytically specify the parameter dependencies of the steady states and stability criteria;

� identify bifurcation points;

� plot the steady state curves in a bifurcation diagram;

� identify whether a system could exhibit hysteresis.



Chapter 5

Stability of ODE systems

In the last chapter we focused on systems of single variables. We now extend our stability theory to
account for any number of variables.

First, we note that the definition of a steady state immediately generalises to any number of
variables. Specifically, if we have n variables, u = (u1, . . . , un) then there must be n ODEs, F (u) =
(F1(u1, . . . , un), . . . , Fn(u1, . . . , un)), one for each variable, in order for the system to be uniquely
defined. Thus, the steady states, us, are found from solving F (us) = 0. The derivation of linear
stability also extends to higher similarly, however, we need to first define the Jacobian.

Definition 18. The Jacobian, J , of an ODE system,

u̇ = F (u), (5.1)

is the matrix of partial derivatives of each function, with respect to each argument,

J =

[
∂Fi

∂uj

]
i,j=1,...,n

=



∂F1

∂u1

∂F1

∂u2
. . . ∂F1

∂un

∂F2

∂u1

∂F2

∂u2
. . . ∂F2

∂un

...
. . .

. . .
...

∂Fn

∂u1

∂Fn

∂u2
. . . ∂Fn

∂un

 . (5.2)

For brevity, it is common practice to write a partial derivative as a subscript, i.e.

∂F

∂u
= Fu. (5.3)

Equally, unless otherwise specified, we assume that the Jacobian is evaluated at the steady state.

Theorem 5.0.1. Suppose us is a steady state of the ODE system

u̇ = F (u). (5.4)

The linear stability of us will depend on the eigenvalues of the Jacobian.

Proof. [The proof follows exactly the same strategy as Theorem 4.1.1. Specifically, because differentia-
tion is linear, you can use the exact same proof, but with tensors, rather than scalars. Namely, consider
the perturbed solution u(t) = us + ε(t), where ||ε(0)|| � 1. Substituting the perturbed solution into
equation (5.4), we find that

ε̇ = F (us + ε). (5.5)

46
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][We now use a multi-variable form of Taylor’s theorem on the right-hand side to derive the approxi-
mation

ε̇ ≈ J(us)ε. (5.6)

To make progress, we assume J is invertible, and, thus, diagonalisable. Critically, this means that we
can find a complete set of eigenvectors, {ν1, . . . ,νn}, and eigenvalues, {λ1, . . . , λ}, such that J can be
written as J = UDU−1, where D is a diagonal matrix with the eigenvalues along the diagonal, U is
a matrix with the, respective, eigenvectors as the columns and U−1 is the inverse of U . Substituting
this form of J into equation (5.6) produces

ε̇ = UDU−1ε, (5.7)

=⇒ U−1ε̇ = DU−1ε. (5.8)

The matrix U−1 is constant so we can take it within the time derivative on the left hand side. Hence,
defining η = U−1ε, we derive

η̇ = Dη. (5.9)

The closed form solution of equation (5.9) is

η =

n∑
i=1

ai exp(λit), (5.10)

where ai are defined by the initial conditions. Thus, the stability of η, and, hence, ε depends on the
eigenvalues, {λ1, . . . , λn}.]

Critically, now we are in higher dimensions, the eigenvalues can have complex values. If we let
λi = αi + βiI then

exp(λit) = exp(αt) (cos(βit) + I sin(βit)) . (5.11)

Thus, real part of the eigenvalues determines the growth rate, whilst the imaginary part determines
the frequency of oscillation in time. Namely, if all eigenvalues have negative real parts the small
perturbations die out. However, if there is at least one eigenvalue with positive real part then the
perturbations will grow and the steady state is not stable.

5.1 Steady state classification of two-dimensional systems

In the last section we demonstrated that the stability of the steady states depends on the eigenvalues
of the Jacobian. In this section, we restrict ourselves to considering two-dimensional systems only and
illustrate that all steady states can be defined to fit a small number of categories.

The following derivation is going to be an explicit form of the proof shown in the last section. The
reason for this is that the condensed vector form of proof is less transparent and it is always good to
see a full sprawling derivation to illustrate the subtleties. Critically, although you may be specifically
be required to reproduce the proof, in a specific case you can generally just calculate the Jacobian
straight away and not bother with the initial linearisation steps.

Consider the general two-dimensional system

u̇ = f(u, v), (5.12)

v̇ = g(u, v). (5.13)

Let (us, vs), be a steady state, i.e. f(us, vs) = g(us, vs) = 0. Linearising around the steady state with
u = us + ε1 and v = vs + ε2 produces

ε̇1 = f(us + ε1, vs + ε2),

≈ f(us, vs)︸ ︷︷ ︸
=0

+fu(us, vs)ε1 + fv(us, vs)ε2. (5.14)
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and, similarly,
ε̇2 = gu(us, vs)ε1 + gv(us, vs)ε2. (5.15)

The eigenvalues will, thus, depend on the four parameters (fu, fv, gu, gv). Note that we have not
restricted the signs of these parameters. Thus, any of them could be positive or negative. Due to
not knowing the signs of the derivatives we are unable to non-dimensionalise them out. However, in a
specific example, this maybe be possible, thus, reducing down the number of free parameter groups in
the steady state and stability conditions.

Combining equations (5.14) and (5.15) we derive(
ε̇1
ε̇2

)
=

[
fu fv
gu gv

](
ε1
ε2

)
. (5.16)

Thus, we are left to find the eigenvalues of

J =

[
fu fv
gu gv

]
, (5.17)

[namely

det(J − λI) =

[
fu − λ fv
gu gv − λ

]
,

= (fu − λ)(gv − λ)− fvgu,
= λ2 − λ(gv + fu) + fugv − fvgu, (5.18)

= λ2 − λT +D, (5.19)

where equations (5.18) and (5.19) are the same but equation (5.19) is rewritten in terms of the trace,
‘T = tr(J)’, and determinant, ‘D = det(J)’, of the Jacobian, J . Finally, the eigenvalues of J have the
form

λ± =
T ±
√
T 2 − 4D

2
. (5.20)

We are now going to characterise the stability of the steady state through the dependence of λ± on T
and D.]

5.1.1 D < 0

If D < 0 then λ± are both real. Moreover T 2 − 4D > T 2, thus λ− < 0 < λ+. Since one of the
eigenvalues has positive real part the steady state is unstable. More specifically, it is called a ‘saddle
point’.

Definition 19. A steady state is a saddle point if not all of the real parts of the eigenvalues have
the same sign.

For a more intuitive understanding such a steady state is called a saddle point because the trajec-
tories want to converge along one direction and diverge along another (see Figure 5.1), i.e. the energy
surface around the steady state is shaped like a saddle.

Example 5.1.22 Saddle point

Consider the system

u̇ = u/(v + 2), (5.21)

v̇ = −v/(u+ 1). (5.22)
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Figure 5.1: A Saddle shaped surface. If a marble is placed at the top of the surface its trajectory will
initially tend to the centre, before diverging to infinity.

[The unique steady state is (u, v) = (0, 0). The Jacobian is

J =

 1
v+2 − u

(v+2)2

v
(u+1)2

− 1
u+1

 =⇒ J(0, 0) =

[
1
2 0
0 −1

]
. (5.23)

If a matrix is upper (or lower) triangular then the diagonal elements are the eigenvalues, thus,
we clearly see that λ− = −1 < 0 < 1 = λ+. Figure 5.2 illustrates solutions of the equations
for multiple initial conditions. We observe that in all cases one of the coordinates converges to a
fixed value, whilst the other grows without bound. For example, the yellow trajectory has initial
condition (u0, v0) = (1/2,−1/2). In the left image of Figure 5.2 the yellow curve diverges, whilst
it converges to zero in the central image, i.e. (u, v)→ (∞, 0).]

Figure 5.2: Saddle point system trajectories, solutions of equations (5.21) and (5.22). Left: plot of
(u, t) for different initial conditions. Middle: plot of (v, t) for different initial conditions. Right: plot
of (u, v) combining the solutions from the left and middle plots. Trajectories from the same initial
conditions have the line colour across all three figures. All trajectories have a least one coordinate that
grows without bound.

5.1.2 D > 0

If D > 0 then the eigenvalues may be real or imaginary. However, what is certain is T 2 − 4D < T 2.
Thus the sign of the real part of the eigenvalue depends on the sign of T . Hence, we break this
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subsection up into to further cases.

5.1.2.1 T = 0

If T = 0 then the eigenvalues are purely imaginary, Re(λ−) = Re(λ−) = 0. This means that the linear
analysis suggests that the trajectories neither growing, nor shrinking, the trajectories, simply oscillate
around the steady state. Such points are called centre points.

Note that this is a marginal case and higher order terms may still cause the system to converge
or diverge, but slowly, thus, although the linear analysis says that the trajectory simply oscillates we
should go to higher orders to check, but this is outside the scope of this course.

Example 5.1.23 Centre point

Consider the system

u̇ = −v − u2, (5.24)

v̇ = −u+ v2. (5.25)

[The unique steady state is (u, v) = (0, 0). The Jacobian is

J =

[
−2u −1

1 2v

]
=⇒ J(0, 0) =

[
0 −1
1 0

]
. (5.26)

The eigenvalues are λ± = ±I. Figure 5.2 illustrates solutions of the equations for multiple initial
conditions. We observe that trajectories close enough to (0, 0) produce closed oscillatory orbits.
However, further away from zero, the trajectories diverge.]

Figure 5.3: Stable system trajectories, solutions of equations (5.24) and (5.25). Left: plot of (u, t) for
different initial conditions. Middle: plot of (v, t) for different initial conditions. Right: plot of (u, v)
combining the solutions from the left and middle plots. Trajectories from the same initial conditions
have the line colour across all three figures.

Example 5.1.23 demonstrates well that our analysis is only valid near the steady state. Namely, three
out of the four initial conditions appear to form closed loops that oscillate around (0,0) (see the right
image of Figure 5.3). However, one of the initial conditions diverges away.
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5.1.2.2 T < 0

If T < 0 then Re(λ−) ≤ Re(λ−) < 0 and, so, all eigenvalues have negative real part, meaning that
the steady state is stable. This case can further be sub-divided depending on the sign of T 2 − 4D.
Namely, if T 2 − 4D > 0 the steady state is a stable node whilst if T 2 − 4D < 0 the steady state is a
stable spiral.

Example 5.1.24 Stable node

Consider the system

u̇ = −u+ v, (5.27)

v̇ = −v/(u+ 1). (5.28)

[The unique steady state is (u, v) = (0, 0). The Jacobian is

J =

[
−1 1

v
(u+1)2

− 1
u+1

]
=⇒ J(0, 0) =

[
−1 1
0 −1

]
. (5.29)

The eigenvalues are λ± = −1 < 0. Figure 5.2 illustrates solutions of the equations for multiple
initial conditions. We observe that in all cases the trajectories converge to (0,0).]

Figure 5.4: Stable system trajectories, solutions of equations (5.27) and (5.28). Left: plot of (u, t) for
different initial conditions. Middle: plot of (v, t) for different initial conditions. Right: plot of (u, v)
combining the solutions from the left and middle plots. Trajectories from the same initial conditions
have the line colour across all three figures. All trajectories converge to (0,0).

Example 5.1.25 Stable spiral

Consider the system

u̇ = − u

1 + v
+ v, (5.30)

v̇ = −u+
v

v + 2
. (5.31)
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The unique steady state is (u, v) = (0, 0). The Jacobian is

J =

 − 1
1+v

v2+u+2v+1
(1+v)2

−1 2
(2+v)2

 =⇒ J(0, 0) =

[
−1 1
−1 1

2

]
. (5.32)

[The eigenvalues are λ± = −1/4 ±
√

7/4I. Figure 5.5 illustrates solutions of the equations for
multiple initial conditions. We observe that in all cases the trajectories converge to (0,0), whilst
spiralling.]

Figure 5.5: Saddle point system trajectories, solutions of equations (5.27) and (5.28). Left: plot of
(u, t) for different initial conditions. Middle: plot of (v, t) for different initial conditions. Right: plot
of (u, v) combining the solutions from the left and middle plots. Trajectories from the same initial
conditions have the line colour across all three figures. All trajectories converge to (0,0).

5.1.2.3 T > 0

Opposite to the previous case 0 < Re(λ−) ≤ Re(λ−) and, so, all eigenvalues have positive real part,
meaning that the steady state is unstable. Similar to the previous naming convention, if T 2 − 4D > 0
the steady state is an unstable node whilst if T 2−4D < 0 the steady state is a unstable spiral.

Example 5.1.26 Unstable node

Consider the system

u̇ =
u

1 + v2
, (5.33)

v̇ = u+ v/(2 + v2). (5.34)

The unique steady state is (u, v) = (0, 0). The Jacobian is

J =

 1
1+v2 − 2uv

(1+v2)2

1 − v2−2
(2+v2)2

 =⇒ J(0, 0) =

[
1 0
1 1

2

]
. (5.35)

[The eigenvalues are 0 < λ− = 1/2 < λ+ = 1. Figure 5.6 illustrates solutions of the equations for
multiple initial conditions. We observe that in all cases the trajectories diverge away from (0,0).]
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Figure 5.6: Unstable system trajectories, solutions of equations (5.33) and (5.34). Left: plot of (u, t)
for different initial conditions. Middle: plot of (v, t) for different initial conditions. Right: plot of (u, v)
combining the solutions from the left and middle plots. Trajectories from the same initial conditions
have the line colour across all three figures. All trajectories diverge away from (0,0).

Example 5.1.27 Unstable spiral

Consider the system

u̇ =
u

1 + v2
+ v, (5.36)

v̇ = −u+
v

v2 + 2
. (5.37)

[The unique steady state is (u, v) = (0, 0). The Jacobian is

J =

 1
1+v2

−v4+2uv−2v2−1
(1+v2)2

−1 2−v2

(2+v2)2

 =⇒ J(0, 0) =

[
−1 1
−1 1

2

]
. (5.38)

The eigenvalues are λ± = −1/4 ±
√

7/4I. Figure 5.5 illustrates solutions of the equations for
multiple initial conditions. We observe that in all cases the trajectories diverge away from (0,0),
whilst spiralling clockwise.]

5.2 Comments

Note that we do not consider the marginal cases D = 0 or T 2 = 4D. This is because these cases need
to be approached on a case by case basis, because it is the non-linear terms which may dominate the
kinetics. Even in the case T = 0, where we generate centre points, we have seen that the analysis
breaks down when the initial condition is too far away from the steady state.

All of the above definitions can be encompassed in a single diagram of the (T,D) plane (see Figure
5.8). Critically, although Figure 5.8 is useful, it is suggested that instead of calculating the trace and
determinant of the Jacobian and figuring out where in the stability diagram that you lie, you calculate
the eigenvalues of any system explicitly.
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Figure 5.7: Unstable spiral system trajectories, solutions of equations (5.36) and (5.37). Left: plot of
(u, t) for different initial conditions. Middle: plot of (v, t) for different initial conditions. Right: plot
of (u, v) combining the solutions from the left and middle plots. Trajectories from the same initial
conditions have the line colour across all three figures. All trajectories diverge away from (0,0).

T

D
T 2 − 4D = 0 T 2 − 4D = 0

saddle

center

stable node unstable node

stable spiral unstable spiral

Figure 5.8: Stability diagram in terms of the trace and determinant of the Jacobian.

5.3 Check list

By the end of this chapter you should be able to:

� derive the steady states of an ODE system;

� prove that the stability of a steady state depends on the eigenvalues of the Jacobian of a system;

� explicitly derive the eigenvalues of the Jacobian of a two-species system;

� use the eigenvalues to characterise steady states in terms of whether they are centres, (un)stable
nodes, (un)stable spirals or saddle points.



Chapter 6

Phase plane analysis

In the last chapter we considered ODE systems with only a single steady state. Even though we are
going to restrict ourselves to a two-dimensional ODE systems, such systems can have many non-trivial
steady states. We need to be able to combine such information to give an idea of what the global
dynamics will be, even though we only have local analysis.

This will be a graphical method and in some ways provides a two-dimensional extension to the
methods seen in Chapter 4. Specifically, in Chapter 4 we could understand the entire dynamics of the
system in the (u, u̇) plane, when we have two variables, we consider the (u, v) plane instead, which is
known as a ‘phase plane’. To construct a phase plane, instead of considering a single trajectory as in
the (t, u) simulation, we consider the motion of a trajectory across all points in the (u, v) space. To
aid in our understanding we introduce a new concept.

Definition 20. Consider an ODE system

u̇ = F (u), (6.1)

where F (u) = (F1(u1, . . . , un), . . . , Fn(u1, . . . , un)). The nullclines are the curves defined by

Fi(u1, . . . , un) = 0, (6.2)

for all i = 1, . . . , n.

Nullclines are a useful concept because on each separate curve the dynamics of at least one variable is
stationary, thus, the direction across a nullcline is simplified. Moreover, if all nullclines meet at a given
point all dynamics must be stationary, i.e. by definition all nullclines meet at steady states.

Example 6.0.28 Nullclines

Consider the system

u̇ = v − (u− 2)(u− 3), (6.3)

v̇ = v − ln(u), (6.4)

in the half plane u > 0.
[The steady states of this would satisfy

ln(u) = (u− 2)(u− 3), (6.5)

which has no closed form solution. We could estimate the solutions using a numerical root finding

55
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][algorithm. However, by plotting the nullclines,

v = (u− 2)(u− 3), (6.6)

v = ln(u), (6.7)

in Figure 6.1, we immediately see there are exactly two steady states.]

Figure 6.1: Plot of the nullclines of equations (6.3) and (6.4).

Consider a general nullcline, for example u̇ = 0. This line must delineate the regions where the
derivative is positive and negative. Namely, on one side of the line u̇ > 0, whilst on the other u̇ < 0.
The same can be said of the v̇ = 0. Thus, the nullclines segment the (u, v) into regions of different
dynamics. We return to example 6.0.28 with this knowledge and specify the signs of the derivatives in
each region.

Example 6.0.29 Derivative signs

[We first consider the u̇ nullcline
v = (u− 2)(u− 3), (6.8)

illustrated in Figure 6.2(a). Pick any point vertically higher than than the curve, e.g. (2,10), and
consider the sign of equation (6.3). Specifically, substituting this value in we get

u̇ = 10 > 0. (6.9)

Thus, above the curve u̇ > 0 and u̇ < 0 below the curve (see Figure 6.2(a)). Once, we know
the sign of the derivative in each section we can draw arrows to illustrate the local direction in
which the trajectory will be heading. For example, in a region with u̇ > 0 the u coordinate will
be increasing and, so the arrowhead points to the right i.e. increasing u direction.

We can do the same for the v regions. For example, consider the point (5, 0),

v̇ = 0− ln(5) < 0. (6.10)

Hence, to the right of the v nullcline v is decreasing. By a similar process v is increasing to the
left of the v nullcline (see Figure 6.2(b)).

We now combine this information in each region providing a sketch of how a trajectory will
act anywhere in the plane. In addition we add arrows the nullclines where we remember that
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][there is no movement in the u direction on the u nullcline and no movement in the v direction
along the v nullcline. Namely, the arrows are vertical and horizontal on the u and v nullclines,
respectively. Equally, we pay explicit attention to which way these arrows are directed according
to the surrounding information.

All of this information is plotted in Figure 6.2(c). Critically, in this case we are able to suggest
what forms the steady states will have. The steady state on the left (approximately (1.6,0.5)) will
be unstable because all of the arrows near to the steady state point away from the steady state.
The steady state on the right (approximately, (3.8,1.3)) appears to be a saddle as arrows in the
horizontal direction point towards the steady state, whilst arrows in the vertical direction point
away from the state.

However, to ensure we are right we have to run the analysis. We will not do this here because
the algebra gets very hairy and, as mentioned, you would need to use a numerical root finder to
estimate the steady states to substitute into the Jacobian. If we do do this numerically we find that
the eigenvalues of the left steady state are λ± ≈ 1.36± 0.69I, thus, the point is indeed unstable,
but an unstable spiral, which we could not have predicted from the graph. The eigenvalues for the
steady state on the right are λ− ≈ −2.43 < 0 < 0.92 = λ+, hence the point is a saddle, justifying
our diagram.]

From this example we have seen that phase planes are helpful diagrams, which encapsulate lots
of stability information. However, as illustrated in comparing the diagram with the actual analytical
values of the eigenvalues it can be difficult to tell the difference between (un)stable nodes and (un)stable
spirals. Equally, as we saw in the last chapter, sketches only provide the correct insight if you draw
the system correctly. If there had been a parameter in this system that we could vary then there may
have been a stability case, dependent on the parameter, that we would miss if we had only drawn one
diagram. Thus, a phase plane should always be backed up with linear analysis. The linear analysis
provides the local information, whilst the phase plane allows us to approximately see how all the
dynamics fit together.

6.1 Check list

By the end of this chapter you should be able to:

� define what a nullcline is;

� understand the relationship between steady states and the points at which nullclines cross;

� plot nullclines;

� sketch arrows showing general trajectory directions on the phase plane;

� interpret the stability of the steady states from the information plotted on a phase plane.
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(a) (b)

(c) (d)

Figure 6.2: Specifying the signs of the derivatives on either side of the (a) u̇ and (b) v̇ nullcline. The
arrowheads indicate the general direction that a trajectory will be heading. These results can then be
combined into the direction plots seen in (c). Finally, in (d), we simulate a number of trajectories,
which demonstrate that the arrows in (c) provide the correct general idea.



Chapter 7

Putting it all together

Throughout this course we have learned how to construct an ODE system from an intuitive understand-
ing of the dynamics (Chapter 2). From this point we simplify the system using non-dimensionalisation,
which reduces the number of free parameters that we need to consider (Chapter 3). Having combined
the system parameters into smaller groupings we are able derive how the systems steady states and
stability rest on these parameters (chapters 4 and 5). Finally, we saw how to illustrate these local
dependencies using a phase plane, in order to better understand the global phenomena (Chapter 6).
In this chapter we combine all of these techniques and completely analyse a number of examples.

7.1 Fish example

Example 7.1.30 Fishing

Consider a lake with fish that attract fishermen. We wish to model the fish-fishermen interaction
under the following assumptions:

• in the absence of fishing the fish population growth is proportional to the current population,
but is suppressed by binary competition;

• the presence of fishermen suppresses the fish growth rate at a rate jointly proportional to
the size of the fish and fisherman populations;

• fishermen are attracted to the lake at a rate directly proportional to the number of fish in
the lake;

• binary competition between fishermen discourages fishermen.

[
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7.1.1 Model the system

] [We convert these rules into interaction equations. Let F stand for fish andM stand for fishermen,

F
k1

�
k−1

2F, (7.1)

M + F
k2→M, (7.2)

F
k3→ F +M, (7.3)

M +M
k4→M. (7.4)

][Next we use the Law of Mass Action to convert the interaction equations into ODEs,

Ḟ = k1F − k−1F
2 − k2FM, (7.5)

Ṁ = k3F − k4M
2. (7.6)

]

7.1.2 Non-dimensionalise

[ We have three variables in this system: F , M and t, thus, we need three valid balances to define
the system. We define our non-dimensionalised variables to be F = [F ]u, M = [M ]v and t = [t]t′,
with the understanding that the bracketed variables are the dimensional part. Although there are
many way we could non-dimensionalise this system, we choose the following,]

Ḟ = k1F − k−1F
2 − k2FM, F (0) = F0, (7.7)

Ṁ = k3F − k4M
2, M(0) = M0. (7.8)

[From these balances we immediately write down

[F ]

[t]
= k2[F ][M ],

k1[F ] = k−1[F ]2,

k3[F ] = k4[M ]2,

which, in turn, provide the following scales

[F ] =
k1

k−1
,

[M ] =

√
k1k3

k−1k4
,

[t] =
1

k2

√
k−1k4

k1k3
,
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][which can be substituted back into equations (7.7) and (7.8) to produce

u̇ = k1[t]
(
u− u2

)
− uv, u(0) = F0

k−1

k1
, (7.9)

[M ]

[t]k3[F ]
v̇ = u− v2, v(0) = M0

√
k−1k4

k1k3
, (7.10)

][where from this point onwards
˙ = d/ dt′.

Effectively, we have dropped the prime from the variable. Finally, we define

u0 = F0
k−1

k1
,

v0 = M0

√
k−1k4

k1k3
,

α = k1[t] =
k1

k2

√
k−1k4

k1k3
,

β =
[t]k3[F ]

[M ]
= k3

k1

k−1

1

k2

√
k−1k4

k1k3

√
k−1k4

k1k3
=
k4

k2
.

Under these parameter definitions we have the final form of our system that we are going to
investigate

u̇ = α
(
u− u2

)
− uv, u(0) = u0, (7.11)

v̇ = β
(
u− v2

)
, v(0) = v0. (7.12)

Before we proceed with the analysis of equations (7.11) and (7.12) we have to show that u0,
v0, α and β are all non-dimensional. First, we write down the dimensions of the rate variables.
Using equations (7.7) and (7.8) and noting that the left-hand side must have units of density/time
we derive

dim(k1) =
1

time
,

dim(k−1) =
1

time× density
,

dim(k2) =
1

time× density
,

dim(k3) =
1

time
,

dim(k4) =
1

time× density
.
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][Further, we note that F0 and M0 have units of density. From these definitions we find that

dim(u0) = F0
k−1

k1
= density× 1

time× density
× time = 1,

dim(v0) = M0

√
k−1k4

k1k3
= density×

√
1

time× density
× 1

time× density
× time× time = 1,

dim(α) = k1[t] =
1

time
× time = 1,

dim(β) =
k4

k2
=

1

time× density
× time× density = 1.

Thus, indeed, all parameters are non-dimensional, as desired.
]

7.1.3 Identify steady states

[Now, we return to considering equations (7.11) and (7.12) and we begin to investigate the stability
of any stationary states that exist. Specifically, steady states satisfy

uv = αu (1− u) , (7.13)

u = v2, (7.14)

which we note are also the nullcline equations. Plotting the nullcline gives us some intuition as to
how many steady states there will be, as well as how many of these states are ‘realistic’. Namely,
since we are dealing with populations, we need us > 0 and vs > 0.

Figure 7.1(a) illustrates equations (7.13) and (7.14), which suggests that there are two, non-
negative steady states and one steady state with a negative value of vs, which we can ignore.
Critically, altering α > 0 does not appear to influence the number of solution or stability. However,
to ensure this insight is correct we analytically extract the steady states from equations (7.13)
and (7.14), to find that the steady states are (0, 0) and (v2

s , vs), where vs is a solution of

v2
s = 1− vs

α
=⇒ vs =

−1±
√

1 + 4α2

2α
. (7.15)

Note that we could equally well have solved the equations in terms of us. However, from Figure
7.1(a), we see that both non-trivial steady state solutions have positive values for us, thus, it is not
so easy to identify the real roots. Here, we can immediately exclude vs = (−1−

√
1 + 4α2)/(2α)

as being the negative root. Thus, are only concerned with (0, 0) and (v2
s , vs), where

vs =
−1 +

√
1 + 4α2

2α
.

From the explicit form of vs we can confirm our assumption that as long as α > 0 there are always
exactly two real, positive steady states.

]



CHAPTER 7. PUTTING IT ALL TOGETHER 63

7.1.4 Calculate stability

[The Jacobian of the system is

J(u, v) =

[
fu fv

gu gv

]
=

[
α (1− 2u)− v −u

β −2βv

]
.

Consider the stability of the zero steady state,

J(0, 0) =

[
α 0

β 0

]
.

We can immediately read off the eigenvalues of this matrix, i.e. λ1,2 = 0, α. Since α > 0 then
(0,0) is always an unstable node. Consider the stability of the non-zero steady state,

J(v2
s , vs) =

[
α
(
1− 2v2

s

)
− vs −v2

s

β −2βvs

]
.

] [The eigenvalues, λ, satisfy the auxiliary equation

0 = λ2 + λ(2βvs − α(1− 2v2
s) + vs) + βv2

s − 2βvs
(
α
(
1− 2v2

s

)
− vs

)
,

= λ2 + λ(2αv2
s + (2β + 1)vs − α) + 4αβv3

s + 3βv2
s − 2αβvs.

To characterise the stability we could solve this quadratic and then consider the roots. However,
in this case it is simpler to consider the trace and determinant of J(v2

s , vs) as discussed in Chapter
5, (see Figure 5.8).

Firstly, we check the determinant. Namely, if the determinant is negative then the points are
guaranteed to be saddles, thus, we consider what cases lead to a negative determinant, i.e.

4αβv3
s + 3βv2

s − 2αβvs < 0. (7.16)

By choice vs > 0, so we can simplify the inequality to a quadratic

4αβv2
s + 3βvs − 2αβ < 0. (7.17)

Equally, vs is defined by equation (7.15), resulting in the following simplification,

0 > 4αβ
(

1− vs
α

)
+ 3βvs − 2αβ,

=⇒ vs > 2α,

=⇒
√

1 + 4α2 > 1 + 4α2,

=⇒
√
c > c,

where c = 4α2 + 1 > 1. But,
√
c < c for c > 1, hence, by contradiction, the determinant can never

be negative. Thus, the points are never saddles, they must be either a stable or unstable node, or
spiral. To determine the stability we consider the trace of the Jacobian,

Tr(J(v2
s , vs)) = α

(
1− 2v2

s

)
− vs − 2βvs. (7.18)
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][Once again, we consider under what conditions the trace is positive, making the steady state
unstable,

0 < α
(
1− 2v2

s

)
− vs − 2βvs,

< α
(

1− 2
(

1− vs
α

))
− vs − 2βvs,

=⇒ α < (1− 2β) vs. (7.19)

The right hand side of inequality (7.19) is a monotonically decreasing function of β, namely, the
largest it can be (for β ≥ 0) is when β = 0. Thus, instead of inequality (7.19) we consider

α < vs,

=⇒ 1 + 2α2 <
√

1 + 4α2

=⇒ α4 < 0,

which is blatantly not true. Thus, by contradiction, (1− 2β) vs < vs < α and the trace must
always be negative. Hence, we deduce that the non-trivial point is stable.

][Our final piece of analysis should be to determine whether the point is a stable node or a
stable spiral, to which end we consider

∆(α, β) = Tr(J)2 − 4Det(J) = (α
(
1− 2v2

s

)
− vs − 2βvs)

2 − 4
(
4αβv3

s + 3βv2
s − 2αβvs

)
= −

(4α2β + 2α2 + 4β2 + 1)(−1 +
√

4α2 + 1)

2α2
+ α2 + 4β2 + 1.

(7.20)

However, analysing Tr(J)2−4Det(J) through algebraic means is extremely tedious and not worth
our effort since a quick plot of equation (7.20), Figure 7.1(b), demonstrates there are regions in
which Tr(J)2 − 4Det(J) is positive and others where it is negative. Note that it is enough to
show that there are values which cause equation (7.20) to evaluate to both positive and negative
values, e.g. ∆(1, 1) ≈ −0.798 and ∆(1, 2) ≈ 1.31. Hence, the steady state can be either a stable
node or spiral depending on the sign of equation (7.20).]

7.1.5 Plot the phase-plane

[To finish the mathematical part of the problem off all the information derived here is sketched
onto the (u, v) phase plane. Figure 7.1(a) shows the nullclines, so, we have to add in the directional
information based on the signs of u̇ and v̇ in each region. Consider the region in which u = 1 and
v � 1. Equations (7.11) and (7.12) both have negative signs, meaning that both populations are
decreasing in this region, which is denoted by the left downward pointing arrow. Once one region
has been identified we are able to fill all regions in turn by simply flipping the sign of one of the
derivatives whenever we pass its nullcline. Namely, passing the u nullcline on the left means that,
in this region, u̇ > 0 and v̇ < 0, which is denoted by a downward right pointing arrow. See Figure
7.2(a) for the full information.

The final stage is to sketch example trajectories from each region to illustrate how the global
solution with develop. Note that we have shown that (0, 0) is always unstable, so trajectories
always tend away from (0, 0). Equally, we have shown the the positive steady state, (us, vs), can
either be a stable spiral or node, so trajectories must tend towards this point. We then try to
draw trajectories that take all of this information, as well as the directional arrows into account.

Such solutions can be seen in figures 7.2(b) and 7.2(c). Critically, we have plotted two images
to illustrate the difference between the stable node and the stable spiral (figures 7.2(b) and 7.2(c),
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][respectively). On the larger view of the phase plane there does not appear to be much difference
between figures 7.2(b) and 7.2(c). The difference is seen primarily in the zoomed in insets, where
we see that the trajectories in Figure 7.2(b) head straight to the steady state, whilst the trajectories
in Figure 7.2(c) do spiral into the steady state.]

7.1.6 What does it mean?

[The final part of the question, and the part you will be least comfortable with, will be to ask
you what does it all mean? Essentially, you have solved the problem in terms of steady states
and stability, resulting in the ability to sketch the global trajectories, but we need to be able to
translate our findings back into insights of the original problem.

So, what have we found? The case of extinct fish is always unstable and that the non-zero
steady state is always stable, although it may be a node or a spiral. This is good because it means
that the fisherman regulate themselves well, i.e. overfishing does not lead to a collapse of the fish
population.

Further, the steady state of the system only depends on α. From Figure 7.1(a) we can see that
][as α increases so does the population values of both u and v. We remind ourselves that

α =
1

k2

√
k1k−1k4

k3
, (7.21)

thus, an increase in α follows from an increase in k1, k−1, k4, or a reduction in k2, or k3. Note
that since k2 is the only parameter not within the square root, the system is, in some ways more
sensitive to k2 than the other parameters.

Note that increasing k−1 increases α. Consequently, increasing α increases the steady state
values of u and v. Thus, we may expect that an increase in k−1 would increase the fish and
fisherman population. However, k−1 is the competition rate between the fish populations (see
equation (7.1)). This seems wrong. Why would increasing fish competition, lead to a greater fish
population? The fact is it does not. We are considering u and v as proxies for the populations,
but to understand the influence of a parameter, we have to re-dimensionalise the problem.

The dimensional steady states of the system are

F = [F ]us =
k1

k−1
us, (7.22)

M = [M ]vs =

√
k1k3

k−1k4
vs, (7.23)

and we note that that for all parameter values (us, vs) is bounded above by (1, 1) (see Figure
7.1(a)). Hence, equations (7.22) and (7.23) demonstrate that as k−1 increases the scales decrease.
Thus, increasing fish competition will, overall, lead to a decrease in the population sizes of both
fish and fishermen. Oppositely, considering equations (7.21)-(7.23), we see that increasing k1 (fish
birth rate) leads to an increase in all populations, which makes sense.]

7.2 Pendulum example

The last example was explicitly described throughout and verbose. This example of the pendulum
equation will be more terse.
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(a) (b)

Figure 7.1: (a) Nullclines of equations (7.11) and (7.12). (b) Plotting the surface defined by equation
(7.20). The yellow region illustrates the region where Tr(J)2 − 4Det(J) > 0 making the steady state
a stable node, whilst the blue region is where Tr(J)2 − 4Det(J) < 0 and the steady is a stable spiral.

Example 7.2.31 Pendulum

[Consider

ü = −g
l

sin(u), u(0) = u0, u̇(0) = v0. (7.24)

Trivially, we non-dimensionalise time using the scale [T ] =
√
l/g and note that the angle, u, is

already non-dimensional. Further, we let v = u̇ to derive

u̇ = v, u(0) = u0, (7.25)

v̇ = − sin(u), v(0) = v0. (7.26)

The steady states are (nπ, 0), for all integers n. Incidentally, the lines u = nπ and v = 0 are also
the nullclines. The Jacobian is

J(u, v) =

[
0 1

− cos(u) 0

]
.

Hence,

J(nπ, 0) =

[
0 1

−(−1)n 0

]
.

The eigenvalues are

λ± = ±
√
−(−1)n =

{
±1 if n is odd,
±I if n is even,

Thus, (nπ, 0) is a saddle if n is odd and a centre if n is even. The directional data and nullclines
are presented in Figure 7.3(a).

So, what does it all mean? Translating the results from Figure 7.3 into physical intuition
we see that if v is small enough and u ≈ 2kπ, for some integer k, namely the angle u is a
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(a)

(b) (c)

Figure 7.2: (a) Dynamics of equations (7.11) and (7.12) in all regions and on the nullclines. (b),
(c) Multiple simulations of equations (7.11) and (7.12) with different initial conditions. In (b) the
parameters are α = 4, β = 4, making the steady state a stable node (see Figure 7.1(b)). In (c) the
parameters are α = 4, β = 1, making the steady state a stable spiral (see Figure 7.1(b)). The insets
of each image demonstrate the dynamics very close to the steady state.
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small perturbation away from the downward vertical then the dynamics cycles back and forth as
][the pendulum oscillates back and forth. However, if the initial velocity is large and the initial
displacement, u ≈ (2k + 1)π, for some integer k, then the pendulum will continuously swing
around and around.]

(a) (b)

Figure 7.3: (a) Dynamics of equations (7.25) and (7.26) in all regions and on the nullclines. (b)
Multiple simulations of equations (7.25) and (7.26) with different initial conditions.

7.3 Check list

By the end of this chapter you should be able to:

� use all the tools developed throughout these notes to completely analyse a system of first order
ordinary differential equations in terms of the steady states available and their stability .
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