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1 Lotka-Volterra equations
Data on the number of Canadian lynx and snowshoe hair pelts traded where collected by the Hudson Bay trading
company1. The data are presented in Figure 1(b) and has been used as a proxy for population data. In this question

(a) (b)

Figure 1: (a) Lynx and hare in action. (b) Number of pelts recorded over time.

we consider a mathematical model that has been suggested to describe the features seen in the data. Specifically, it is
a predator-prey interaction model called the Lotka-Volterra model. Let L be the lynx population and H be the hare
population. The interaction equations are

H
k1→ 2H︸ ︷︷ ︸

Hares reproduce.

, H + L
k2→ 2L︸ ︷︷ ︸

Lynx reproduce through predation.

, L
k3→ /0︸ ︷︷ ︸

Lynx die out.

. (1)

1. Describe two features seen in the population data of Figure 1(b).

2. Name two troubling assumptions behind the Lotka-Volterra interaction equations and suggest how they could be
fixed.

3. Write down the ODEs representing the interaction system.
1Caution about the data: I have not been able to verify this data, but this is the data (or rather the graph) that is always cited. This

particular set of data came from scanning in the graph from Odum’s "Fundamentals of Ecology", p. 191 which is often cited. Odum says that
his graph is taken from MacLulich’s "Fluctuations in the numbers of varying hare", 1937, which is not widely available. Some authors caution
that this data is actually a composition of several time series, and should probably not be analysed as a whole, and that some of the lynx data
was actually missing. It is said that the data was collected from Hudson’s Bay historical records, and does not reflect animal populations, but
rather the number of pelts turned in for trading (a large number of which came from Native Americans- mentioned because there were some
medical outbreaks during these years which could account for skewed data). The data are presented here with these cautions.
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4. Let u and v be non-dimensional variables of the hare and lynx, respectively. Non-dimensionalise the system to
produce a system of the form:

u̇ = u− uv, (2)
v̇ = α(uv − v), (3)

where the time derivative is with respect to some non-dimensionalised time.
Provide the dimensional scales of the population (i.e. [L], [H] and [t]) as well as the definition of α. Note, that you
are not required to show that [L] and [H] have the right dimension and α is dimensionless, but it is a good way to
check your working.

5. What are the steady states?

6. What is the linear stability of the states?

7. Consider
du
dv = u̇

v̇
. (4)

Show that equation (4) can be directly integrated to show that the populations must satisfy the constraint(
ev

v

)(
eu

u

)α
= eC , (5)

where C is a constant of integration that depends on the initial conditions, which you should specify explicitly.
(Hint: rearrange du/ dv such that one side contains all u terms and the other contains all v terms).

2 Computer simulation
Let α = 1/2 and simulate equations (2) and (3). Plot the results in the (u, v) plane along with equation (5). Note you will
have to choose appropriate initial conditions, specify C in terms of these initial conditions and use an implicit plotting
algorithm such as fimplicit in MatLab.

1. Vary the initial conditions, what do you notice?

2. Do your discoveries accord with the results from question 1?

3. Now consider the plot of (t, u) and (t, v). Do the simulated curves match the data seen in Figure 1(b)?

3 Bifurcations
Consider the following set of equations which model the interactions of two populations N1 and N2:

Ṅ1 = r1N1

(
1− N1

K1 + b12N2

)
, (6)

Ṅ2 = r2N2

(
1− N2

K2 + b21N1

)
. (7)

1. What dynamics are occurring between the species N1 and N2?
Hint 1: by the symmetry of N1 and N2 in the equations whatever N1 is doing to N2, N2 is doing to N1. This means
that the dynamics could be mutual creation (mutualism) or mutual destruction (competition).
Hint 2: Compare the above equations to regular logistic curve u̇ = ru(1 − u/K). What happens if we increase or
decrease K? Thus, what influence does increasing or decreasing N1 have on N2?

2. Use N1 = K1u1, N2 = K2u2, t = τ/r1 to non-dimensionalise the equations. Define ρ = r2/r1, α12 = b12K2/K1 and
α21 = b21K1/K2. Rewrite the system parameters in terms of α12, α21 and ρ.

3. Show that the system has four steady states:

(0, 0), (0, 1), (1, 0), (ū1, ū2), (8)

where
ū1 = 1 + α12

1− α12α21
, ū2 = 1 + α21

1− α12α21
. (9)

What restrictions (if any) do we need to place of the steady states?
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4. Determine the linear stability of the steady states. Taking care to note any bifurcation conditions and how they
relate to the restrictions on the steady state existence.

Exam revision

4 Predator competition
One of the assumptions in the Lotka-Volterra equation is that the predation effect is proportional to both the predator
and prey population. However, as the number of prey increases the competition between predators will increase, thus, we
consider the adapted equations

u̇ = u− uv, (10)
v̇ = b(uv − v)− bv2. (11)

1. What are the steady states of the system?

2. Characterise the stability of the valid steady states, noting any dependences on the parameter b.

3. How does predator competition change the outcome of the situation, compared to the basic Lotka-Volterra equation
shown in question 1?

5 The Lorenz equations
In 1963, Edward Lorenz developed a simplified mathematical model for atmospheric convection. The model is a system
of three ordinary differential equations now known as the Lorenz equations:

ẋ = σ(y − x), (12)
ẏ = x(ρ− z)− y, (13)
ż = xy − βz. (14)

The equations relate the properties of a two-dimensional fluid layer uniformly warmed from below and cooled from above.
In particular, the equations describe the rate of change of three quantities with respect to time: x is proportional to the
rate of convection; y is proportional to the horizontal temperature variation; z is proportional to the vertical temperature
variation. The constants σ, ρ, and β are system parameters proportional to the Prandtl number, Rayleigh number, and
certain physical dimensions of the layer itself.

For simplicity, let σ = β = 1.

1. What are the steady states, noting dependencies of ρ?

2. Characterise the stability of the zero steady state only, noting dependencies of ρ. Note that you will have to find
the eigenvalues of a 3× 3 matrix. Substituting in the values of the steady state will help you. The non-zero steady
states are always either stable nodes or stable spirals when they exist.

3. Simulations for ρ > 1 and ρ < 1 are illustrated in Figure 2. Do these accord with your findings?

EXTENSION 1: If you are brave enough calculate the eigenvalues corresponding to the non-zero steady states and
show that they always have negative real part when ρ > 1, but they may be complex.

EXTENSION 2: If you are even braver rerun the analysis with variables σ = 10, ρ = 28 and β = 3. This causes the
system to act chaotically. Categorise the steady states in this case. What happens? An image of the chaotic trajectory
can be seen in Figure 3.
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(a) ρ = 0.5

(b) ρ = 2

Figure 2: Simulating the Lorenz equations with σ = 1, β = 1 and ρ given beneath each figure, for a variety of initial
conditions. The black circles indicate the initial conditions. On the left is the full, three-dimensional realisation, whilst
the rest of the plots in the row are the (x, y), (x, z) and (y, z) projections.
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(a)

(b)

Figure 3: Simulating the Lorenz equations with σ = 10, β = 3 and ρ = 28 for two initial conditions that start very close
together. Top: the black circles indicate the initial conditions. On the left is the full, three-dimensional realisation, whilst
the rest of the plots in the row are the (x, y), (x, z) and (y, z) projections. Bottom: time series of x, where we observe the
two trajectories diverging.
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