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1 French flag threshold
Consider an empty one-dimensional domain, [0, L], such that x = 0 is insulated. At time t = 0 the boundary x = L is
turned into a source of morphogen, M , of constant strength S. The morphogen is able to diffuse away from the boundary
at a rate D and decays at a rate proportional to itself with constant of proportionality r.

1. Justify the following model of this set up,

∂M

∂t
= D

∂2M

∂x2 − rM, 0 < x < L, (1)

M(x, 0) = 0, (2)

∂M(0, t)
∂x

= 0, M(L, t) = S. (3)

2. Determine the steady state distribution, M(x, t) = Ms(x).

Suppose the domain is filled with cells that are able to sense the concentration ofM and that the cells can differentiate
into two different forms based on the concentration of M that they sense. Namely, if Ms < S/2 then cells differentiate
into form 1, whilst ifMs > S/2 then then cells differentiate into form 2. Define xs ∈ [0, L] to be the point which delineates
the regions between cells of form 1 and cells of form 2.

3. Draw two sketches of Ms(x) to show that xs may, or may not exist.

4. Show that
xs =

√
D

r
cosh−1

(
1
2 cosh

(√
r

D
L

))
. (4)

5. Using equation (4) and the intuition from question 3, under what parameter conditions does xs exist? Hint: the
inverse of cosh does not output real values for all input values.

6. By sketching Ms for multiple values of L, suggest what happens to xs as L gets larger.

7. Follow the proceeding steps derive a first order approximation of xs in L, for large L.

(a) Noting that:
• cosh(x) = 1

2 (exp(x) + exp(−x));
• cosh−1(x) = ln

(
x+
√
x2 − 1

)
.

what is cosh
(
L
√
r/D

)
for large L?

(b) Using the answer from part 7a show that, for large L,

xs ≈
√
D

r
ln
(

1
2 exp

(√
r

D
L

))
. (5)
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(c) Rearrange equation (5) to generate a form
xs ≈ L− C, (6)

where C is a positive constant that should be defined.

8. Does solution (6) confirm the intuition gained from the question 6?

9. What does equation (6) mean for the cell populations on a large domain?

10. (Optional) Using computer software you are comfortable with plot equations (4) and (6) with values D = 10
and r = 1 for 0 ≤ L ≤ 10. Be careful of where the solution becomes xs becomes imaginary. How good is the
approximation? Estimate the length, L, at which Ms is always above S/2.

1.1 Answers
1.

∂M

∂t︸︷︷︸
Rate of change of

morphogen
concentration

= D
∂2M

∂x2︸ ︷︷ ︸
Diffusion of
morphogen

through domain

− rM︸︷︷︸
Decay of

morphogen

, 0 < x < L︸ ︷︷ ︸
Domain size

, (7)

M(x, 0) = 0︸ ︷︷ ︸
Initial condition

, (8)

∂M(0, t)
∂x

= 0︸ ︷︷ ︸
Left boundary is

insulated

, M(L, t) = S︸ ︷︷ ︸
Right boundary is
a constant flux

. (9)

2. Since we are looking for a steady state distribution we can set the time derivative to zero. We then look for solutions
of the form

Ms = exp(λx) (10)
and derive a condition for λ. However, in this case it is easier to look for solutions using the substitution

Ms = A cosh(λx) +B sinh(λx), (11)

which is simply an alternate form of substitution (10). Critically, starting with the boundary condition at x = 0 we
find that B = 0. Similarly, the boundary condition at x = L provides us with

A = S

cosh(λL) . (12)

Finally, substituting equation (11) into equation (1) and simplifying we generate

0 = Dλ2 − r. (13)

Since cosh is a even function (i.e. f(x) = f(−x)) we only need to take the positive root. Thus,

Ms =
S cosh

(√
r
Dx
)

cosh
(√

r
DL
) . (14)

3. See Figure 1. Key things to note, the plot is a cosh, so, it looks approximately exponential. We have to obey the
boundary conditions, so the derivative is zero at x = 0 and the concentration is fixed at S at x = L. The final point
to note depends on the level of Ms at x = 0. Depending how steep the gradient and how big L is xs may, or may
not, exist.

4. We want to find x = xs such that Ms = S/2. Substituting these values in,

S

2 =
S cosh

(√
r
Dxs

)
cosh

(√
r
DL
) . (15)

and rearranging gives equation (4).
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Figure 1: Sketches of Ms and xs. Note it is possible that the gradient is very shallow (left) and, thus, no xs exists.
However, if the gradient is steep enough (right) then xs does exist.

5. cosh−1(y) does not give real values for y < 1. Thus, for xs to exist we require

cosh
(√

r

D
L

)
≥ 2. (16)

This can be rearranged in various ways, but there is no real simpler presentation.

6. See Figure 2. As the domain size increases the population decays more and more. This can also be seen using
inequality (16). Namely, if the inequality is not satisfied initially (red line in Figure 2) increasing L is one way to
satisfy the inequality. Intuitively, the population is only produced at the boundary and decays everywhere else as it
moves. As L increases xs also increases.

Figure 2: Sketches of Ms and xs on increasingly larger domains.

7. For the following question

(a) For L� 1 we have that cosh
(
L
√
r/D

)
≈ exp

(
L
√
r/D

)
/2.

(b) Substituting this into the logarithmic form of cosh−1 we get

xs =
√
D

r
cosh−1

(
1
2 cosh

(√
r

D
L

))
≈ ln

exp
(
L
√
r/D

)
4 +

√√√√√exp
(
L
√
r/D

)
4

2

+ 1

 . (17)

Since L� 1 √√√√√exp
(
L
√
r/D

)
4

2

+ 1 ≈
exp

(
L
√
r/D

)
4 . (18)

So

xs ≈
√
D

r
ln

exp
(
L
√
r/D

)
2

 (19)
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(c) Expanding the logarithm in equation (19) provides

xs ≈
√
D

r

(
ln
(

1
2

)
+ ln

(
exp

(
L
√
r/D

)))
, (20)

which upon rearrangement and simplification gives

xs ≈ L−
√
D

r
ln (2) . (21)

8. Equation (21) tells us that xs does indeed increase as L increases, it also tells us that xs is (to a first order
approximation) a constant distance, C =

√
D/r ln (2), away from the boundary x = L.

9. For large domains most of the cells are in form 1. Specifically, the only cells which see a concentration of morphogen
above S/2 are those within the region [L− C,L].

10. The plot can be seen in Figure 3. We see that the approximation becomes excellent for L ≥ 6 and the solution of
xs disappears around L ≈ 4.

Figure 3: Comparing equations (4) and (6).

2 Patterning
Alongside the Schnakenberg system, which we have seen throughout the course, the Gierer-Meinhardt kinetics1 are a
well-known system of morphogen kinetics that produce Turing patterns.

The Gierer-Meinhardt reaction-diffusion system on a infinite one-dimensional domain is

∂A

∂t
=f(A,H) +DA

∂2A

∂x2 , (22)

∂H

∂t
=g(A,H) +DH

∂2H

∂x2 , (23)

where

f(A,H) = ρ1A
2

(1 +KA2)H − µ1A, (24)

g(A,H) =ρ2A
2 − µ2H. (25)

where A and H are the morphogen populations and K, ρ1, ρ2, µ1, µ2, DA and DH are positive constants. We assume that
A and H remain finite over the domain and appropriate initial conditions are provided. Initially, let us fix K = 0.

As on sheet 2 this question is a good chance to practice deriving the Turing inequalities. However, if you are confident
that you know what you are doing2 then you can simply write down the required answers.

1Meinhardt always maintained that the Schnakenberg system should be named after him and Gierer, as well, as it appeared as a specific
case of one of their results in their original paper.

2Trust me, you don’t.
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1. (0,0) is a homogeneous steady states of equations (22) and (23). What is the positive steady state, (As, Hs)?

2. Write down two inequalities that the positive steady state must satisfy in order to be stable, in the absence of
diffusion.

3. Derive conditions under which the non-zero homogeneous steady state is stable in the absence of diffusion, but
unstable when diffusion is included3 (i.e. derive the Turing conditions).

Now assume that K 6= 0.

4. Show that the positive homogeneous steady state must satisfy

µ1ρ2As
ρ1µ2

(1 +KA2
s) = 1. (26)

5. Sketch the phase plane with nullclines f = 0 and g = 0 and demonstrate that there is still only one positive
homogeneous steady state. Be sure to draw the two nullcline arrangements that can occur. Namely, the quadratic
defined by g = 0 can cut f = 0 either before or after the maximum of f = 0. Do not forget to add the directional
arrows specifying the signs of At and Ht.

6. What Jacobian sign structures are necessary for a Turing instability to take place?

7. Near the non-zero steady state the derivatives of (At, Ht) change sign. Use the nullcline plot to extract the signs
of fA, fH , gA and gH and, thus, show that a diffusion-driven instability can occur in only one of the two situations.
Hint: in a (A,H) phase plane the signs of fA and gA are defined by changes in signs of (At, Ht) along a horizontal
path through (As, Hs), whereas the signs of fH and gH are defined by changes in the signs of (At, Ht) along a vertical
path through (As, Hs).

2.1 Answers
1. Since we are looking for homogeneous steady states of equations (22) and (23), (As, Hs), we can ignore the spatial

and temporal derivatives. Thus, the steady states are simultaneous solutions of f(As, Hs) = g(As, Hs) = 0,

0 =ρ1A
2
s

Hs
− µ1As, (27)

0 =ρ2A
2
s − µ2Hs. (28)

Ignoring the (0, 0) solution we can substitute equation (28) into equation (27) and derive

0 = ρ1µ2A
2
s

ρ2A2
s

− µ1As, (29)

which provides a value for A. Substituting this back into equation (28) we are able to derive Hs. Thus, overall

(As, Hs) =
(
µ2ρ1

µ1ρ2
,
µ2ρ

2
1

µ2
1ρ2

)
. (30)

2. To derive the stability criterion we need to derive the Jacobian of (f, g). This can be done by linearising around the
positive steady state, i.e. substitute (

A
H

)
=
( µ2ρ1

µ1ρ2
µ2ρ

2
1

µ2
1ρ2

)
+
(
ε1
ε2

)
exp(λt) (31)

into the spatially homogeneous version of equations (22) and (23) and ignore quadratic and higher order terms of
ε1 and ε2. We then finally derive conditions to ensure that the real part of λ is negative.
Alternatively, we can, straight away, write down the Jacobian

J(A,H) =
[

2 ρ1A
H − µ1 −ρ1A

2

H2

2Aρ2 −µ2

]
(32)

3As a personal hint I suggest keeping the system as At = f(A, H)+DAAxx and Ht = g(A, H)+DHHxx, derive the inequalities in generality
and then substitute the functional forms of f and g in at the end.
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and evaluate it at the steady state

J(As, Hs) =

 µ1 −µ1
2

ρ1

2 µ2ρ1
µ1

−µ2

 . (33)

Once again, we can derive the eigenvalues, λ, of J(As, Hs) and derive conditions under which the eigenvalues have
negative real parts.
Alternatively, we can check the notes in Appendix C and find that the stability criterion are

0 >trace(J) = µ1 − µ2, (34)
0 <det(J) = µ1µ2. (35)

3. The first half of the problem (stability in the face of no diffusion) was done in the last question. Again you can either
write the answers down from the notes, or derive them. Which is what we will do here. Since we are considering a
spatial instability our perturbation is of the form(

A
H

)
=
(
As
Hs

)
+
(
ε1
ε2

)
exp(λt) cos(kx). (36)

Substituting perturbation (36) into equations (22) and (23) provides

λ exp(λt) cos(kx)
(
ε1
ε2

)
=− k2 exp(λt) cos(kx)

(
DA 0
0 DH

)(
ε1
ε2

)
+
(
f(As, Hs)
g(As, Hs)

)
︸ ︷︷ ︸

=0

(37)

+ exp(λt) cos(kx)
(
fA fH
gA gH

)(
ε1
ε2

)
. (38)

Rearranging and simplifying gives(
0
0

)
=
(
fA − k2DA − λ fH

gA gH − k2DH − λ

)(
ε1
ε2

)
. (39)

To have a non-trivial solution the matrix must have determinant zero,

0 = λ2 − λ(fA + gH − k2(DH +DA)) + (fA − k2DA)(gH − k2DH)− fHgA. (40)

To have an instability there must be at least one solution, λ, with positive real part. Since

2λ± = (fA + gH − k2(DH +DA))±
√

(fA + gH − k2(DH +DA))2 − 4((fA − k2DA)(gH − k2DH)− fHgA) (41)

and we require fA + gH < 0 for stability in the absence of diffusion then we know that

fA + gH − k2(DH +DA) < 0 (42)

because DH +DA > 0. Thus, the only way to get to ensure λ+ > 0 is to enforce

0 > (fA − k2DA)(gH − k2DH)− fHgA = k4DADH − k2(DAgH +DHfA) + fAgH − fHgA = h(k2). (43)

Since h is a positive quadratic function in k2 the only time it is negative is if there are two real, positive, roots:

2DADHk
2
± = DAgH +DHfA ±

√
(DAgH +DHfA)2 − 4DADH(fAgH − fHgA). (44)

Thus, to ensure k2
± are real and positive we require that

DAgH +DHfA > 0, (45)
(DAgH +DHfA)2 − 4DADH(fAgH − fHgA) > 0, (46)

fAgH − fHgA > 0. (47)

Since we already require fAgH − fHgA > 0 equations (45) and (47) can be wrapped up into

DAgH +DHfA > 2
√
DADH(fAgH − fHgA). (48)

Thus, finally, we can insert the functions f and g into the appropriate inequalities and specify that Turing patterns
are generated when

0 >µ1 − µ2, (49)
0 <µ1µ2, (50)

2
√
DADHµ1µ2 <DHµ1 −DAµ2. (51)
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4. Since we are looking for homogeneous steady states of equations (22) and (23), (As, Hs), we can ignore the spatial
and temporal derivatives. Thus, the steady states are simultaneous solutions of f(As, Hs) = g(As, Hs) = 0,

0 = ρ1A
2
s

(1 +KA2
s)Hs

− µ1As, (52)

0 =ρ2A
2
s − µ2Hs. (53)

Ignoring the (0, 0) solution we can substitute equation (53) into equation (52) and derive

0 = ρ1µ2A
2
s

(1 +KA2
s) ρ2A2

s

− µ1As, (54)

which upon further manipulation gives equation (26).

5. The A nullclines are

A =0, (55)

H = ρ1A

(1 +KA2)µ1
. (56)

The H nullcline is

H = ρ2

µ2
A2. (57)

The accompanying phase planes are shown in Figure 4. The figure demonstrates that there is one positive steady
state.

Figure 4: The Gierer-Meinhardt phase planes.

6. Either from looking it up from the notes, or deriving it from question 3. The Jacobian must have the sign form[
+ +
− −

]
, or

[
+ −
+ −

]
(58)

along with column and row permutations.

7. Consider Figure 5(a) which shows the nullcline arrangement where Ḣ = 0 is to the right of the maximum of Ȧ = 0.
Focus on the steady state and consider travelling along the dashed line from x to x′. At x Ȧ = f > 0 and at x′
Ȧ = f < 0, so as A increases Ȧ = f goes from positive to negative, so Ȧ = f must be a decreasing function of A
near the steady state. This means that fA < 0. Similarly at x, Ḣ = g < 0 and at x′, Ḣ = g > 0, so as A increases
Ḣ = g goes from negative to positive, so Ḣ = g must be an increasing function of A near the steady state. This
means that gA > 0. Following this logic along the vertical branch, from y to y′ we discover that fH < 0 and gH < 0.
Thus the accompanying Jacobian sign structure is [

− −
+ −

]
(59)

and, so, a Turing instability cannot happen.
If we now consider Figure 5(b) which shows the nullcline arrangement where Ḣ = 0 is to the left of the maximum
of Ȧ = 0. We see that travelling from x to x′ and y to y′ only ever takes us between two sectors. The same logic
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(a) (b)

Figure 5: Extracting derivatives signs from the Geirer-Meinhardt phase planes.

applies and we can derive that fA > 0, fH < 0, gA > 0 and gH < 0. Thus the accompanying Jacobian sign structure
is [

+ −
+ −

]
(60)

and, so, a Turing instability could happen.

3 Simulating Turing patterns
No Matlab this time. Simulating partial differential equations is not a simple task. However, there are websites out there
that have done the heavy lifting for you.

The Gray-Scott reaction-diffusion model is

∂u

∂t
= Du∇2u− uv2 + F (1− u), (61)

∂v

∂t
= Dv∇2v + uv2 − (F + k)v, (62)

where appropriate boundary and initial conditions are assumed to be given and Du, Dv, F and k are constants. F is
known as the feed rate as it causes more u to be added to the system. k is the death rate as it controls the rate at which
v is removed from the system.

You can play around with the feed rate, death rate and initial conditions through this online applet. What patterns
can you create? As a base level try and find spots, labyrinthine patterns and constantly evolving patterns, like those
shown in Figure 6. For those more adventurous try and find other patterns contained within these equations.

Exam Revision

4 Properties of Turing patterns
Consider a two species reaction-diffusion system with Neumann boundary conditions on a domain B, which has boundary
∂B,

∂u

∂t
= Du∇2u+ f(u, v), (63)

∂v

∂t
= Dv∇2v + g(u, v), (64)

∂u

∂n
= ∂v

∂n
= 0 on ∂B. (65)

and random initial conditions. Further, assume that the kinetics and diffusion parameters are chosen such that the
populations (u, v) undergo Turing patterning.

1. Specify the Jacobian structures behind “cross” and “pure” kinetics.
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(a)

(b)

(c)

Figure 6: Possible patterns in the Gray-Scott equations (61) and (62).

2. Explain why the resulting morphogen patterns of (u, v) are in phase when cross kinetics are used and out of phase
when pure kinetics are used. Note: in phase means that the peaks and troughs of u and v occur at the same
positions, where as out of phase means that the peaks of u correspond to the troughs of v and vice-versa. Hint:
consider the signs of ε1 and ε2. Under what conditions are they the same/different? What does this mean?

3. Explain why spatial oscillations can never occur at a Turing bifurcation point. Namely, show that the unstable
eigenvalue λ must always be real at the onset of patterning.

4. Why must Du 6= Dv? (Hint: assume they are equal and derive a contradiction).

4.1 Answers
1. The “cross” kinetic Jacobian structure is

J =
[

+ +
− −

]
. (66)

The “pure” kinetic Jacobian structure is
J =

[
+ −
+ −

]
. (67)

Note row and column permutations of the above are also valid.
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2. We consider perturbations to the steady of the form(
u
v

)
=
(
us
vs

)
+
(
ε1
ε2

)
exp(λt) (68)

where λ is an eigenvalue of
J −Dk2 =

(
fu − k2Du fv

gu gv − k2Dv

)
(69)

and
ε =

(
ε1
ε2

)
(70)

is a corresponding eigenvalue, thus,

(J −Dk2)ε = λε =⇒ (J −Dk2 − λI)ε = 0. (71)

Consider the case of cross kinetics and write down the signs we know in the matrix (J −Dk2 − λI),

J −Dk2 − λI =
(

? +
− −

)
. (72)

Namely, the top right and bottom left entries are just fv and gu, respectively, and, thus, do not change sign. The
top left entry is positive (from fu), but has values subtracted from it (−k2Du − λ), so we cannot guarantee its sign.
However, the bottom right entry of J is negative (gv < 0) in the case of cross kinetics and since we are subtracting
further values from it, the bottom right term of J −Dk2 − λI remains negative.
Knowing these signs and that equation (71) must be satisfied we know that ε1 and ε2 must satisfy(

s?
1 s+

2
s−3 s−4

)(
ε1
ε2

)
= 0, =⇒ s?

1ε1 + s+
2 ε2 = 0,

s−3 ε1 + s−4 ε2 = 0, (73)

where sij is some real number with sign i. The equation with unknown sign does not help. However, rearranging the
other equation leads to

ε1
ε2

= −s
−
3
s−4
. (74)

Since s−3 and s−4 are both negative the right-hand side of equation (74) is negative, thus, we deduce that ε1 and ε2
must be of opposite sign. Finally, without loss of generality, let ε1 > 0 > ε2 this means that the perturbation to us
is a positive cosine, whilst the perturbation to vs is a negative cosine and, thus, the patterns are out of phase.
The above logic can be followed with the pure kinetic sign structure. However, in this case you should derive that(

s?
1 s−2
s+

3 s−4

)(
ε1
ε2

)
= 0, =⇒ s?

1ε1 + s−2 ε2 = 0,
s+

3 ε1 + s−4 ε2 = 0, (75)

resulting in
ε1
ε2

= −s
+
3
s−4
. (76)

The right-hand sign on equation (76) is positive, meaning that ε1 and ε2 are the same sign. Thus, the perturbations
to the steady states are in phase.

3. The eigenvalues of the Turing instability are

2λ± = (fu + gv − k2(Du +Dv))±
√

(fu + gv − k2(Dv +Du))2 − 4((fu − k2Du)(gv − k2Dv)− fvgv). (77)

These are imaginary if and only if

(fu + gv − k2(Dv +Du))2 − 4((fu − k2Du)(gv − k2Dv)− fvgv) < 0 (78)

However, (fu+gv−k2(Dv+Du))2 > 0 and for an instability to exist we need −4((fu−k2Du)(gv−k2Dv)−fvgv) > 0.
Thus, at the onset of patterning inequality (78) cannot be satisfied and, thus, λ± are real, so oscillations in time do
not happen.
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4. Two of the Turing inequalities are

fu + gv < 0 (79)
Dvfu +Dugv > 0. (80)

If Dv = Du > 0 then we could factor the constant out of equation (80) and, thus, be able to derive

fu + gv < 0 (81)
fu + gv > 0, (82)

resulting in a contradiction.

5 Creating the model
For each of the following images in Figure 7 write down a set of reaction-diffusion equations that could provide the images
as a steady state solution. Do not forget to provide boundary conditions. For initial conditions assume that there is a
small spatially random amount of morphogen throughout the domain.

(a) (b) (c)

Figure 7: Three steady state morphogen profiles.

5.1 Answers
Note that the following suggestions are non-unique (as illustrated in case 2), so if you have a different suggestion you
could be right.

1. Things to notice:

• the boundaries are fixed to two different values;
• the profile of u decays away from the boundaries.

Using these two pieces of information the follow reaction-diffusion equation should give a steady profile similar to
Figure 7(a), for appropriate values of D and γ.

∂u

∂t
= D

∂2u

∂x2 − γu, (83)

u(0, t) = S, u(L, t) = S/2. (84)

2. Since the entire profile is flat the boundaries could either be fixed at S = 0, or they could be zero-flux. One potential
equation behind this system is:

∂u1

∂t
= D

∂2u1

∂x2 , (85)

u1(0, t) = S, u1(L, t) = S. (86)
Another potential is

∂u2

∂t
= D

∂2u2

∂x2 + ru2(S − u2), (87)

∂u2

∂x
(0, t) = 0 = ∂u2

∂x
(L, t). (88)
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3. We note that the steady state is a combination of two heterogeneous morphogens that are out of phase. This suggests
using a reaction-diffusion system. Equally, the morphogen profile at the boundaries is ‘flat’, which suggests zero-flux
boundary conditions. Hence, we need a system of the following form

∂u

∂t
= Du

∂u

∂x
+ f(u, v), (89)

∂v

∂t
= Dv

∂v

∂x
+ g(u, v), (90)

∂v

∂x
(0, t) = ∂u

∂x
(0, t) = 0 = ∂u

∂x
(L, t) = ∂v

∂x
(L, t), (91)

such that f and g satisfy the Turing instability inequalities (see equations (45) and (47)). Additionally, because the
populations are out of phase we know that the Jacobian of partial derivatives must satisfy the cross kinetic pattern,

J =
[

+ +
− −

]
. (92)

If you had gotten this far I would be happy with this answer. However, pushing your memory a little further you
might remember that the Schnakenberg kinetics are Turing unstable and produce out of phase patterns and, thus,
would make a satisfactory choice for f and g.
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