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Chapter 1

Introduction

This course builds directly on the techniques you may have learned in MA0232 Modelling with Differen-
tial Equations. As in MA0232 we will develop techniques that allow us to model biological phenomena
and, in particular, derive properties of the equations without explicitly solving them.

This may seem counter-intuitive as we have a variety of techniques that enable us to solve many
of the equations that we see in closed form. Further, numerical simulations can be used to illustrate
equations that we cannot solve analytically. However, even when direct solutions are available, they
may not always enable clear interpretations and understanding of the underlying system. Equally, our
analytical techniques will give us confidence in the solutions produced by numerical software.

Initially, we will focus on systems where the dynamics are spatially homogeneous. In other words
the interactions are occurring uniformly across space, the agents we are modelling are ‘well mixed ’ and
we only need to consider the evolution of the agent populations over time. Such dynamics are typically
modelled (but not exclusively, as we will see in Chapter 4) using ordinary differential equations, ODEs.

We will then proceed to consider systems where there is explicit spatial variation. In ecological and
biological contexts the main physical phenomenon governing the spatial movement of agents is typically
(but again not exclusively), diffusion. Diffusion, as we will see in Chapter 4 models random movement,
thus, we are generally assuming that our agents do not have a preferred movement direction.

However, before we investigate such interesting cases as animal pigmentation patterning and neural
pulses we must begin at the start with the techniques you should have already covered.

1.1 References

The main references for this lecture course will be:

• J. D. Murray, Mathematical Biology, 3rd edition, Volume I.

• J. D. Murray, Mathematical Biology, 3rd edition, Volume II.

Other useful references include:

• J. P. Keener and J. Sneyd, Mathematical Physiology.

• L. Edelstein-Keshet, Mathematical Models in Biology.

• N. F. Britton, Essential Mathematical Biology.

4



CHAPTER 1. INTRODUCTION 5
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Figure 1.1: (a), (b) The bibles of Mathematical Biology. (c) Prof. Jim D. Murray (right), Prof. Philip
K. Maini (centre) and Dr Thomas E. Woolley (left).



Chapter 2

Things you have forgotten

Whilst we are considering spatially uniform dynamics we will be concerned with ordinary differential
equations, ODEs.

Definition 1. An ordinary differential equation (ODE) is a differential equation containing one or
more functions of exactly one independent variable and its derivatives.

We will be considering the rate of change of a variable, u, with respect to another variable, t,
normally time. This dependence will be denoted

u(t). (2.1)

Here, u is a scalar function (i.e. one-dimensional), but more generally, we will be considering systems
of variables

u(t) = (u1(t), u2(t), . . . , uk(t)) . (2.2)

The values of u or u define quantities of interest. For example they could be an animal population
density, or biochemical concentrations. On the board we will usually write bold symbols with an
underline1 as it is easier to see, thus, u = u.

In order to link the changes in these quantities we define a system of ODEs in the most general
way possible,

F

(
t,u,

du

dt
,

d2u

dt2
, . . . ,

dnu

dtn

)
= 0, (2.3)

with initial condition given by
u(0) = u0. (2.4)

Note that the initial condition is kept general as we will usually be interested in how the dynamics of
the system change for different starting points.

Definition 2. A system of differential equations is autonomous if the system does not explicitly
depend on the independent variable.

When the variable is time, they are also called time-invariant systems, this simply means that we
are assuming that the defined underlying laws of the system are identical to those for any point in the
past, or future.

Definition 3. To save time we use a dot or prime mark to denote a derivative with respect to the
argument, thus,

u̇(t) = u′(t) =
du

dt
. (2.5)

1I was once told that we use underlines to illustrate bold variables because when typesetting a document an underline
would tell the printer that that symbol needed to be bold. However, if this is true, how did the writer indicate that they
wanted a symbol underlined?
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CHAPTER 2. THINGS YOU HAVE FORGOTTEN 7

Traditionally, dots are primarily used when the variable is time and primes are used otherwise.
Note that higher orders derivatives are signified by the appropriate number of dots or primes. Namely,
a second derivative would be denoted by two dots or primes, etc.

In this course we are going to occupy ourselves with systems of autonomous first order equations,
of the form

du

dt
= u̇ = F (u). (2.6)

This may seem highly restrictive. However, systems of first order equations can have extremely com-
plicated properties, such as oscillations and chaos, which we will try to understand.

2.1 How to model a system

Modelling a system, whether it be physical, chemical, or biological, is, in some ways, more of an art
than a science. You try and strip away all extraneous information and mathematically describe that
which is left. In physics there are physical laws to help you, e.g. gravity, conservation of energy and
mass. Unfortunately, biology has no such fundamental laws. Thus, we must use experimental intuition,
e.g. predator-prey interactions from population data. Critically, the modelling should always form
part of a cyclical process (see Figure 2.1).

You try to start with physical intuition (experiment), represent the important parts mathemati-
cally (model), hopefully reproduce reality (test) and, finally, use your mathematical model to predict
unknown outcomes (predict). These predictions can then feed back into experiment and the process
begins anew.

Figure 2.1: Diagram of the modelling cycle.
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2.2 Law of Mass Action

In this section we will learn about a very general technique that will allow us to build an ODE sys-
tem out of multiple interacting populations. These populations could represent chemical compounds,
humans, cells or animals as well as different states within a population i.e. infected humans and sus-
ceptible humans. The law presented in this section is applied whenever the populations of the system
are able to: (i) change identities; (ii) create more population members; or (iii) cause populations to de-
cay. Specific examples of each of these interactions are, respectively: (i) susceptible humans becoming
infected through interactions with a diseased person; (ii) animals giving birth; (iii) predators eating
prey. Note that a change-of-identity interaction can itself be thought as a combination of creation and
degradation operations. For example, in the above case of infection a member of the susceptible human
population is removed from the system, whilst an infected human is added to the system. Thus, all
interactions can be made through combining creation and degradation operations.

We use chemical reaction notation to specify the outcomes of population interactions. Consider
a system composed of n different interacting populations (u1, . . . , un). We assume that all interac-
tions between the population elements lead to the creation, or destruction, of one (or more) of the n
populations.

Definition 4. A rate equation specifies that an interaction involves a1 members of population u1, a2

members of population u2, etc. and produces b1 members of population u1, b2 members of population
u2, etc. The equation is written as

a1u1 + a2u2 + · · ·+ anun
r→ b1u1 + b2u2 + · · ·+ bnun, (2.7)

where r > 0 is the reaction rate.

Note that some of the ai and bi values can be zero.
Rate equations provide a rigorous way of defining all of the interactions a system is assumed to

undergo. However, we still require a method of converting the rate equation into an ODE. This is the
power of the Law of Mass Action.

Definition 5. The Law of Mass Action states that production rate of a reaction is directly propor-
tional to the product of the input population sizes. Specifically, if

a1u1 + a2u2 + · · ·+ anun
r→ b1u1 + b2u2 + · · ·+ bnun

is the reaction of interest then the production rate is proportional to

rua11 ua22 . . . uann (2.8)

and the accompanying ODEs are

u̇1 = (b1 − a1)rua11 ua22 . . . uann , (2.9)

u̇2 = (b2 − a2)rua11 ua22 . . . uann , (2.10)

... (2.11)

u̇n = (bn − an)rua11 ua22 . . . uann . (2.12)

Note that in converting from reaction equation to the ODE of ui we to account for the stoichiometry,
i.e. (ai− bi). Further, when multiple reactions are considered, the terms arising from the Law of Mass
Action are simply added together as independent terms.
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Example 2.2.1 Creating logistic growth

Consider a bacterial population u and a nutrient population v, such that the bacteria uses the
nutrient to reproduce, i.e. ,

u+ v
R→ 2u,

and the initial conditions are u(0) = u0 and v(0) = v0.
[ Using the Law of Mass Action we derive the following two equations:

u̇ = Ruv, (2.13)

v̇ = −Ruv. (2.14)

Adding the equations together we find that

d

dt
(u+ v) = 0, (2.15)

meaning that u + v = constant = u0 + v0 = K for all time. We can substitute this formula into
equation (2.13) to get

u̇ = Ru(K − u) = RKu
(

1− u

K

)
= ru

(
1− u

K

)
, (2.16)

where we have defined a new parameter r = RK, known as the growth rate and K is know as the
carrying capacity. Overall, equation (2.16) is known as the logistic equation. ]

2.3 Non-dimensionalisation

To non-dimensionalise a system of equations, we have the following rules:

1. Identify all the variables;

2. Replace each variable with a quantity scaled relative to a characteristic unit of measure (to be
determined);

3. Choose the definition of the characteristic unit for each variable;

4. Rewrite the system of equations in terms of the new dimensionless quantities.

We note three particular points about these rules. Firstly, the theory behind non-dimensionalisation
is straight forward. Namely, we substitute scaled variables into an equation system and massage the
equations until we have rearranged the system to produce the desired outcome. However, in practice
the difficulty of the technique lies in the algebraic manipulation; it is very easy for the terms to become
lost during the manipulation. Thus, care must be taken during the algebraic manipulation stage.

Secondly, you will notice the word ‘choose’ in point 3. This means that it possible to construct many
different non-dimensionalised systems from the same system of equations, i.e. non-dimensionalisation
is non-unique. We usually choose the characteristic unit of each variable to either emphasise one of
the terms in a system or to remove as many parameters as possible.

Finally, this technique is hard to demonstrate in generality. It is much better to consider a number
of examples and see how the technique works in action. Thus, what follows will be a select number of
examples, which along with your problem sheets should give you a good basis in the theory. However,
do not think that these are all the examples you could face.

It should be noted that there is little consistency in nomenclature across book when considering
the separation of variables into their dimensional and non-dimensional components. Thus, always be
clear in your definitions.
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2.3.1 Examples of non-dimensionalisation through substitution of variables

Example 2.3.2 Substituting variables

Consider the equation for logistic growth,

u̇ = ru
(

1− u

K

)
, u(0) = u0. (2.17)

[Again, u = [u]u′ and t = [t]t′ can be substituted into equation (2.17) to produce

du′

dt′
= [t]ru′

(
1− [u]

K
u′
)
, u′(0) =

u0

[u]
,

from which we see that it would be wise to take [t] = 1/r. Beyond this we see that we have a
choice. Should we take [u] = K, or [u] = u0? Both are valid non-dimensionalisations and either
maybe be appropriate depending on the context of the problem.

Here, we are going to take [u] = K as we are interested in the dynamics of the system, rather
than the initial condition. Thus, after dropping primes, for notational convenience, we see that
we can non-dimensionalise equation (2.17) to

du

dt
= u (1− u) , u(0) = U0,

where U0 = u0/[u] = u0/K.
For mathematicians dropping primes is often done as the last step because we infrequently care

about the actual values of the variables, rather we study the dynamics available in the equation.
However, in any specific application we should be careful to remember that the variables we are
dealing with are non-dimensional and that the solution is not complete until we ‘re-dimensionalise’
the variables.

In this case the non-dimensionalisation demonstrates that the only parameter that the solution
depends on is the initial conditions. Changing r does not change the dynamics of the system, it
only changes the time scale, since r = 1/[t]. Equally, changing K simply scales the size of the
solution, as u = Ku′.]

2.3.2 Examples of non-dimensionalisation through the arrow method

The substitution method shown in Section 2.3.1 will always work, assuming that the algebra is manip-
ulated correctly. However, the method can be cumbersome and slow. Moreover, because it involves
lots of algebraic manipulations there are many chances to make a mistake.

An alternative method rests on using arrows to identify the desired balances. This can be much
quicker as the initial stages do not require laborious substitution. However, we have to be more careful
because not all balances that we can ‘draw’ using the arrows will be valid.

The idea behind the arrow method is that you draw arrows between the quantities that are go-
ing to ‘balance’, which simply means they are going to have the same coefficient in the final non-
dimensionalised form. The process is generally the same as the substitution method. However, we
must remember that in order to specify the problem completely the number of valid arrow balances
must equal the number of variables. For example, if a problem depends on u and t we would need
two balances. Alternatively, if the problem depended on u, v, and t we would need three valid bal-
ances.

Example 2.3.3 Arrow method



CHAPTER 2. THINGS YOU HAVE FORGOTTEN 11

Consider the following equation

u̇ = k0 + k1u+ k2u
2, u(0) = u0. (2.18)

[We have two variables, u and t, and so we need two balances. Specifically, the arrows state that
we want to balance the derivative, linear and quadratic terms,

[u]

[t]
= k1[u] = k2[u]2,

from which it is simple to discover that

[t] =
1

k1
, [u] =

k1

k2
.

We still need to substitute the scales into the equations. Namely, u = u′k1/k2 and t = t′/k1, but
again the arrow method simplifies this task. Specifically, we know that, by design, the coefficient
of the derivative, linear and quadratic term are going to be the same. Thus, we can divide through
by one of them to speed up the derivation,

du′

dt′
=

k0

k1[u]
+ u′ + u′2.

Finally, redefining the last parameter as α = k0/(k1[u]) = k0k2/(k
2
1) and the initial condition

u′(0) = k2u0/k1 = u′0, we can non-dimensionalise equation (2.18) to the final form of

u̇ = α+ u+ u2, u(0) = u′0, (2.19)

where we have dropped the primes from the variables for simplicity.]

2.4 Stationary states and stability

Now that we are able to model and simplify a physical system, we want to predict what the equations
will do without having to simulate the system each time. Specifically, we are not interested in the
transient initial behaviour of the equations, we want to understand what the trajectories will like look
far into the future. To enable us to generate insights we first need two important definitions.

Definition 6. A state, us, is a steady state or stationary state of the ODE system

u̇ = F (u) (2.20)

if it satisfies F (us) = 0.

This definition simply states that if the ODE system ever reaches us then the system will not
evolve further because all of the dynamics are in equilibrium. This is a useful concept, but currently
incomplete.

For example, you can (theoretically) stand a pencil on its tip and it would remain stationary, if
it were not perturbed (see Figure 2.2). Hence, this is a stationary state orientation of the pencil.
However, it would require only a very small perturbation to cause the pencil to fall over and, thus,
transition from the state of being on its point to being on its side (see Figure 2.2). Given a large
enough perturbation (i.e. picking the pencil up) you could reset the pencil to the previous state of
standing on its point. However, it requires a larger perturbation to reset the pencil than it does to
knock it over and, so, we see that although these state are both stationary states they are somehow
fundamentally different. This difference comes down to the intuitive concept of ‘stability’.
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Figure 2.2: Stationary states of a pencil.

Definition 7. A steady state, us, of the ODE system

u̇ = F (u) (2.21)

is stable if for all ε > 0, there exists a δ > 0 and a t0 > 0 such that whenever |u(t) − us| < δ then
|u(t)− us| < ε for all t ≥ t0. Otherwise the steady state is unstable

Simply put, this means that a state, us, is stable if whenever a solution u(t) comes close enough
to it then the solution tends to the state i.e. u(t) → us. In the example of the pencil, both the
vertical and horizontal orientations of the pencil are stationary states. However, only the horizontal
orientation is stable.

2.5 Linear stability

Having a definition of stability is one thing, but we need a method of characterising whether a system
is stable or unstable. The crux of this characterisation is to consider the dynamics of an ODE system
near its stationary points. To do this we substitute a solution into the equations that is a perturbation
about the steady state. Using Taylor series we expand the system in terms of the perturbation and
keep only the linear terms as we are assuming that the perturbation is small. Since the system is now
linear we can solve the approximate equations completely and, thus, they will tell us what dynamics
to expect close to the steady states.

Theorem 2.5.1. Suppose us is a steady state of the one dimensional ODE,

u̇ = F (u), (2.22)

then us is linearly stable if dF (us)/ du < 0 and linearly unstable if dF (us)/ du > 0.

Proof. The proof can be found in Appendix A.

We make a number of remarks about the theorem’s statement:

• The theorem makes no claim about the solutions properties in the case that the first derivative
dF (us)/ du = 0. In this specific case we would have to go to higher order in the Taylor

expansion.
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• Linear stability only tells us what happens close to the steady state. Thus, although a state
may be stable, we have no metric for how close we have to be to the steady state before we are
attracted to the stable point.

• In the case that us is unstable we cannot conclude what happens to the trajectory. Indeed, a
trajectory near an unstable point may grow without bound or, simply tend to one of the other
stationary states in the system that is stable.

Example 2.5.4 Stationary states and stability of the logistic equation

The non-dimensionalised logistic equation is (as we have seen before)

u̇ = u(1− u). (2.23)

[Firstly, we calculate the steady states by setting u̇ = 0. Trivially, we can see that the steady
][are u = 0 and 1. Next we calculate the derivative of the right-hand side of equation (2.23) with
respect to u,

F (u) = u(1− u) =⇒ F ′(u) = 1− 2u. (2.24)

Since,

F ′(0) = 1 > 0, F ′(1) = −1 < 0, (2.25)

then, from Theorem 2.5.1, we deduce that 0 is an unstable steady state and 1 is a stable steady
state. These results are confirmed in Figure 2.3.]

Figure 2.3: Multiple simulations of equation (2.23) with different initial conditions, u0, (noted in the
legend), illustrating the stationary states and their stability characteristics.

In the case that we have a system of ODEs, we note that the definition of a steady state immediately
generalises to any number of variables. Specifically, if we have n variables, u = (u1, . . . , un) then there
must be n ODEs, F (u) = (F1(u1, . . . , un), . . . , Fn(u1, . . . , un)), one for each variable, in order for
the system to be uniquely defined. Thus, the steady states, us, are found from solving F (us) = 0.
The derivation of linear stability also extends to higher similarly, however, we need to first define the
Jacobian.

Definition 8. The Jacobian, J , of an ODE system,

u̇ = F (u), (2.26)
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is the matrix of partial derivatives of each function, with respect to each argument,

J =

[
∂Fi
∂uj

]
i,j=1,...,n

=



∂F1

∂u1

∂F1

∂u2
. . . ∂F1

∂un

∂F2

∂u1

∂F2

∂u2
. . . ∂F2

∂un

...
. . .

. . .
...

∂Fn

∂u1

∂Fn

∂u2
. . . ∂Fn

∂un

 . (2.27)

For brevity, it is common practice to write a partial derivative as a subscript, i.e.

∂F

∂u
= Fu. (2.28)

Equally, unless otherwise specified, we assume that the Jacobian is evaluated at the steady state.

Theorem 2.5.2. Suppose us is a steady state of the ODE system

u̇ = F (u), (2.29)

where F is continuously differentiable everywhere in all of its arguments and the Jacobian is locally
invertible. The linear stability of us will depend on the eigenvalues of the Jacobian. Namely:

• if all eigenvalues have negative real part then the steady state is stable;

• if any eigenvalue has positive real part then the steady state is unstable.

In systems of two species we can be more specific and split the cases up further. Namely, suppose
the steady state has eigenvalues λ1 and λ2,

Eigenvalue characteristic Steady state characteristic

Eigenvalues are real
λ1 ≥ λ2 > 0 Unstable node
λ1 > 0 > λ2 Saddle point
0 > λ1 ≥ λ2 Stable node

Eigenvalues are imaginary
Re(λ1) ≥ Re(λ2) > 0 Unstable spiral
Re(λ1) = Re(λ2) = 0 Centre node
Re(λ1) ≤ Re(λ2) < 0 Stable spiral

Proof. The proofs for general systems can be found in Appendix B and the specific proof for two
species systems can be found in Appendix C.

Definition 9. A bifurcation point of a system is a parameter value at which the characteristics of the
steady states change. This can be either in number of steady states, or their stability.

Example 2.5.5 Schnakenberg kinetics

Calculate the steady state of the following system of equations

u̇ = f(u, v) = −u+ u2v, (2.30)

v̇ = g(u, v) = β − u2v, (2.31)

and characterise its stability.
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[The steady state, (us, vs), satisfies

0 = f(u, v) = −us + u2
svs, (2.32)

0 = g(u, v) = β − u2
svs. (2.33)

Adding equations (2.32) and (2.33) together we get that us = β and, thus, from equation (2.33)
vs = 1/β. The Jacobian at the steady state is

J =

[
−1 + 2usvs u2

s

−2usvs −u2
s

]
=

[
1 β2

−2 −β2

]
. (2.34)

The eigenvalues, λ, satisfy

0 = (1− λ)
(
−β2 − λ

)
+ 2β2 = λ2 − λ

(
1− β2

)
+ β2, (2.35)

and, so,
2λ± = 1− β2 ±

√
(1− β2)2 − 4β2. (2.36)

From equation (2.36) we notice that λ± > 0 whenever β2 < 1 =⇒ 0 < β < 1 and that λ± are
complex when,

(1− β2)2 − 4β2 <0,

=⇒ −2β < (1− β2) <2β,

=⇒ β2 − 2β − 1 < 0 <β2 + 2β − 1,

=⇒ −1 +
√

2 < β <1 +
√

2.

]

Figure 2.4: Plotting the eigenvalues from example 2.5.5.
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(a) β = 0.25

(b) β = 0.75

(c) β = 1

(d) β = 1.2

(e) β = 2.5

Figure 2.5: Illustrating the stationary states and stability characteristics of the Schnakenberg equations
from example 2.5.5. The left plots show the trajectories of each population over time. The right plots
show the corresponding phase planes. The red circle in each case is the steady state (β, 1/β), where β
is noted beneath each figure.
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2.6 Curve sketching

Algebraic and analytical solutions will always be the surest way of providing an answer, as they
provide all information regarding the quantitative values and parameter dependencies. However, such
solutions are not always possible. Sometimes they algebra is not tractable, or the solution might be
too cumbersome to provide clear insight. Thus, we often fall back on the skill of curve sketching.

There is no defined process to curve sketching. Essentially, you are looking for simple features
that you understand and, thus, the best approach to curve sketching is through gaining experience.
Namely, the more functions you sketch the larger your catalogue of known shapes. However, there are
some general tips that will help you sketch simple curves, as well as a number of stereotypical examples
you should know well.

Suppose we want to sketch the curve f(x, µ), where x is the argument and µ is a parameter, the
general tips are:

• look for any “obvious” roots, xc such that f(xc) = 0 of the function you are trying i.e. consider
0, 1,∞, or immediate simple parameter dependencies, e.g. xc = µ, or µ2.

• consider the general curve properties, thus, even if you cannot derive the roots, can you say that
there must be roots? For example a cubic must always have at least one real root.

• for any roots that you have found consider the derivative close to the points (if possible). This
will tell you which way the curve is crossing the x-axis. Namely, if f ′ > 0 the curve is passing
into the upper half-plane, whilst if f ′ < 0 then the curve is passing into the lower half-plane.

• consider what happens to the function near x = 0 and x→∞. Equally, are there any particularly
simple limits of µ?

• consider the dependency of the function of f on µ. Are there direct correlations? Namely, does
increasing µ always increase/decrease the value of f(x, µ)?

2.6.1 Specific curves and their properties

Generally, in this course, we will consider polynomial dependencies, as well as rational polynomial
fractions. Although this seems quite restrictive, most models are constructed out of this small tool kit.
Specifically, because they have “nice” properties, such as being well understood and easy to sketch.
Further, even if we come across something more complicated, Taylor series guarantees that we can
consider polynomial expansions in some small interval around the point of interest.

2.6.1.1 Polynomials

A polynomial over leading order n is guaranteed to have n roots over the complex plane. However, as
we are applying these functions to real biological situation we, generally, only need to consider the real,
positive roots. Thus, although a polynomial may have many roots (see Figure 2.6), we can guarantee
that a minimum number exists. Specifically:

• polynomials with an odd leading order term are guaranteed to have at least one real root.

• polynomials with an even leading order term may have no real roots.

Note that just because there are roots, this does not mean that they are physically meaningful.
Frequently, when multiple roots exist, we will invoke reality to justify the choice of only real, positive
roots as we, generally, consider positive populations.
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(a) (b)

Figure 2.6: Basic polynomial properties. The lines have dashed centres as the shape can be altered
depending on the specific polynomial used. However, the minimum number of roots can be guaranteed
(if there are any). (a) A general odd polynomial. (b) A general even polynomial (with negative leading
order term).

2.6.1.2 Hill functions

Hill functions are also common functions that are used widely as they can cover a wide variety of
outcomes. They have the form

f(x) =
αxm

βn + xn
, (2.37)

where α and β are control parameters.
Although, below, we consider α = β = 1 changing these parameters does not, generally, change

the qualitative properties we are illustrating. The parameters, only tend to influence the quantitative
behaviour of the function e.g. how big the gradients are, or where the transitions happen.

Generally, m = n (which is the usual definition of the Hill function), but there is no reason why
this is so. Further, the function has different properties for the different cases of m relative to n. See
Figure 2.7 for the possible outcomes. In all cases the dynamics will be dominated by xm for small x
and xm−n for large x. This is why we need to consider the sign of m− n.

• When m > n, although there maybe stationary points, the curve will eventually tend to grow
without bound.

• When m = n, xm−n = 1. Thus, the function asymptotes to f → 1. Such Hill functions are used
as “switches”, namely one type of dynamic occurs when x is small and another occurs when x is
large. Steepness of the switch is controlled by the size of m = n; larger values create a sharper
transition.

• When m < n, xm−n = 1/xn−m → 0 as x→ 0. Thus, although we have an initial hump the curve
decays to zero.

Thus, we can see why Hill functions are so powerful, namely, they are able to describe growth, satu-
ration and decay all through the sign of m− n.

2.7 Phase planes

2.7.1 One-dimensional

In one dimension the phase plane is a plot of the dynamics in the (u, u̇) plane. Steady states can easily
be read off as they are where the curve crosses the x-axis. Equally, we can determine the stability of
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(a) m > n (b) m = n (c) m < n

Figure 2.7: The general shape of Hill functions, equation (2.37), with (a) m > n, (b) m = n and (c)
m < n.

the steady states by considering where the curve lies.
Specifically, if whenever the curve lies in the top half plane u̇ > 0 and, thus, u increases over time.

Thus, u will increase without bound, or until the curve crosses the x-axis, at which point ẋ = 0.
Similarly, in the bottom half plane u̇ < 0 and, so, u decreases over time, either without bound, or until
the curve cuts the x-axis.

Example 2.7.6 Logistic equation phase plane

Consider
u̇ = u(1− u). (2.38)

[The phase plane of the logistic equation is plotted with dynamic arrows in Figure 2.8. Critically,
these arrows verify the results seen in example 2.5.4, namely, u = 0 is unstable as trajectories
diverge away from it, whilst u = 1 is stable as trajectories tend to this state. These insights match
those gained from example 2.5.4. ]

Figure 2.8: The phase plane plot of the logistic curve in (u, u̇) coordinates.
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2.7.2 Two-dimensional

In Section 2.7.1 we could understand the entire dynamics of a one species system in the (u, u̇) plane.
We would like to gain the same information for systems with multiple populations However, when we
have two variables we would have to plot four variable (u, v, u̇, v̇), which is hard to visualise and almost
impossible to sketch. Thus, we simplify our plot and only consider the (u, v) plane instead, which is
known as the ‘phase plane’. To construct a phase plane (instead of considering a single trajectory, as
in the (t, u) simulation) we consider the motion of a trajectory across all points in the (u, v) space.

To aid in our understanding we introduce a new concept.

Definition 10. Consider an ODE system

u̇ = F (u), (2.39)

where F (u) = (F1(u1, . . . , un), . . . , Fn(u1, . . . , un)). The nullclines are the curves defined by

Fi(u1, . . . , un) = 0, (2.40)

for all i = 1, . . . , n.

Nullclines are a useful concept because on each separate curve the dynamics of at least one variable
is stationary, thus, the direction across a nullcline is simplified. Moreover, if all nullclines meet at a
given point all dynamics must be stationary, i.e. by definition all nullclines meet at steady states.

The nullclines then delineate different dynamical regions. Namely, consider a general nullcline, for
example u̇ = 0, on one side of the line u̇ > 0, whilst on the other u̇ < 0 (not this is not necessarily
true). The same can be said of the v̇ = 0. Thus, the nullclines segment the (u, v) into regions of
different dynamics. With this knowledge we can specify the signs of the derivatives in each region and,
thus, sketch what will happen in each case.

Example 2.7.7 Two-dimensional phase plane

Consider the system

u̇ = v − (u− 2)(u− 3), (2.41)

v̇ = v − ln(u), (2.42)

in the half plane u > 0.
[The steady states of this would satisfy

ln(u) = (u− 2)(u− 3), (2.43)

which has no closed form solution. We could estimate the solutions using a numerical root finding
][algorithm. However, by plotting the nullclines,

v = (u− 2)(u− 3), (2.44)

v = ln(u), (2.45)

in Figure 2.9(a), we immediately see there are exactly two steady states.]
[We first consider the u̇ nullcline

v = (u− 2)(u− 3), (2.46)
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] [illustrated in Figure 2.9(b). Pick any point vertically higher than the curve, e.g. (2,10), and
consider the sign of equation (2.41). Specifically, substituting this value in we get

u̇ = 10 > 0. (2.47)

Thus, above the curve u̇ > 0 and u̇ < 0 below the curve (see Figure 2.9(b)). Once, we know
the sign of the derivative in each section we can draw arrows to illustrate the local direction in
which the trajectory will be heading. For example, in a region with u̇ > 0 the u coordinate will
be increasing and, so the arrowhead points to the right i.e. increasing u direction.

We can do the same for the v regions. For example, consider the point (5, 0),

v̇ = 0− ln(5) < 0. (2.48)

Hence, to the right of the v nullcline v is decreasing. By a similar process v is increasing to the
left of the v nullcline (see Figure 2.9(c)).

We now combine this information in each region providing a sketch of how a trajectory will
act anywhere in the plane. In addition we add arrows the nullclines where we remember that
there is no movement in the u direction on the u nullcline and no movement in the v direction
along the v nullcline. Namely, the arrows are vertical and horizontal on the u and v nullclines,
respectively. Equally, we pay explicit attention to which way these arrows are directed according
to the surrounding information.

All of this information is plotted in Figure 2.9(d). Critically, in this case we are able to suggest
what forms the steady states will have. The steady state on the left (approximately (1.6,0.5)) will
be unstable because all of the arrows near to the steady state point away from the steady state.
The steady state on the right (approximately, (3.8,1.3)) appears to be a saddle as arrows in the
horizontal direction point towards the steady state, whilst arrows in the vertical direction point
away from the state.

However, to ensure we are right we have to run the analysis. We will not do this here because
the algebra gets very hairy and, as mentioned, you would need to use a numerical root finder to
estimate the steady states to substitute into the Jacobian. If we do do this numerically we find that
the eigenvalues of the left steady state are λ± ≈ 1.36± 0.69I, thus, the point is indeed unstable,
but an unstable spiral, which we could not have predicted from the graph. The eigenvalues for the
steady state on the right are λ− ≈ −2.43 < 0 < 0.92 = λ+, hence the point is a saddle, justifying
our diagram.]

From this example we have seen that phase planes are helpful diagrams, which encapsulate lots
of stability information. However, as illustrated, in comparing the diagram with the actual analytical
values of the eigenvalues it can be difficult to tell the difference between (un)stable nodes and (un)stable
spirals. Equally, sketches only provide the correct insight if you draw the system correctly. If there had
been a parameter in this system that we could vary then there may have been a stability case, dependent
on the parameter, that we would miss if we had only drawn one diagram. Thus, a phase plane should
always be backed up with linear analysis. The linear analysis provides the local information, whilst
the phase plane allows us to approximately see how all the dynamics fit together.

2.8 Check list

By the end of this chapter you should be able to:

� reproduce all definitions;

� convert a system of population interactions into reaction equations;

� convert reaction equations into ODEs using the Law of Mass Action;
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(a)

(b) (c)

(d) (e)

Figure 2.9: (a) Plot of the nullclines of equations (2.41) and (2.42). Specifying the signs of the
derivatives on either side of the (b) u̇ and (c) v̇ nullcline. The arrowheads indicate the general direction
that a trajectory will be heading. These results can then be combined into the direction plots seen in
(d). Finally, in (e), we simulate a number of trajectories, which demonstrate that the arrows in (d)
provide the correct general idea.



CHAPTER 2. THINGS YOU HAVE FORGOTTEN 23

� non-dimensionalise a system of equations using direct substitution, or the arrow method;

� sketch simple curves

� derive the steady states and their dependence on any given parameters;

� derive the stability of the steady states and their dependence on any given parameters;

� identify parameter dependent bifurcations;

� define what a nullcline is;

� understand the relationship between steady states and the points at which nullclines cross;

� plot nullclines;

� sketch arrows showing general trajectory directions on the phase plane;

� interpret the stability of the steady states from the information plotted on a phase plane.



Chapter 3

Population modelling

When modelling the changes to any population we must ensure that we include any pertinent produc-
tion sources and removal sinks. This ensures that we maintain “population conservation”. Namely, all
creation and degradation is accounted for in the following word equation (see Figure 3.1),

Rate of population change = Birth Rate−Death Rate + Rate of Immigration− Rate of Emigration

Figure 3.1: Population changes stem from four basic dynamics.

In this chapter we assume that the system is closed and thus there is no emigration of immigration.
Namely, we assume that the problem has no spatial variation, or that it is not important. Thus we
simply consider the temporal evolution of the system.

3.1 Continuum modelling

There are multiple ways of modelling a population. If there are a large number of individuals in the
population and we want to consider how the population changes over continuous time we can use
ODEs to define the rules governing the evolution and, hence, predict how the population will fair.

Definition 11. Suppose there exists a function g such that u̇ = f(u) can be written as

u̇ = ug(u) (3.1)

24
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then g is known as the intrinsic growth rate.

Example 3.1.8 Growth law examples

• The Malthus model, 1798

u
b→ 2u,

u
d→ /0.

[From the law of mass action we get

u̇ = u(b− d) u(0) = u0. (3.2)

Equation (3.2) can easily be solved to produce the solution u = u0 exp ((b− d)t). However,
we can get all the information from equation (3.2) just from considering different cases of b
and d. Namely,

u is

 exponentially growing if b > d,
not changing if b = d,

exponentially decaying if b < d.
(3.3)

]

• The Verhulst Model, 1845. Also commonly known as the Logistic Growth Model.

u
r→ 2u,

2u
r/K→ u.

[The Logistic equation is

u̇ = ru
(

1− u

K

)
Using partial fractions, we can directly solve for u. Specifically,

du

dt
= ru

(
1− u

K

)
,

⇒
∫ T

0

du

u(1− u/K)
=

∫ T

0

r dt,

⇒
∫ T

0

1

u
+

1/K

1− u/K
du = rT,

⇒
[
ln(u)− ln

(
1− u

K

)]T
0

= rT,

⇒ ln

(
u

1− u
K

)
− ln

(
u0

1− u0

K

)
= rT,

⇒ u(T ) =
K

1 + K−u0

u0
exp (−rT )

. (3.4)

]
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Example 3.1.9 US population

In 1845 Pierre Verhulst used 60 years worth of population data from the US census and was able
to predict the population for the next 100 years. See Table 3.1 and Figure 3.2.

• What goes wrong after 1950 in Figure 3.2(a)?

• In Figure 3.2(b) one of the fitted parameters is K = 309.3. What does this mean?

• The US population in 2018 was over 327 million. Should we use the logistic equation to
model the US population?

[

• Multiple possible answers: the second world war created the baby boomer generation, who
produced a lot of children; medicine/ hygiene/ food production became a lot better after
the second world war due to scientific advances and operations research.

• It suggests that the maximum population of the US should be around 309 million.

• Could be answered both yes or no.

– Yes: there is certainly going to be a fundamental limit the US can sustain (the carrying
capacity). The current population is within ±10% of the prediction, so not too bad.

– No: we do not know what the limiting factors are so, we cannot encode them in the
equation. The logistic equation contains an exponential factor, meaning that the results
are very sensitive to small changes. The model assumes the population does not have
external interference and, so, diseases, wars, and/or technological advances, which can
fundamentally change a population are not considered.

]

(a) (b)

Figure 3.2: (a) The logistic curve fitted by Verhulst in 1845 to US census data. The blue dots are the
data known to Verhulst. The black data is the next 100 years worth of data. The initial condition is
given by the data u0 = 3.929. The fitted parameters are K = 188.3 and r = 0.0316. (b) The logistic
curve fitted with all data up to 1990. The fitted parameters are K = 309.3 and r = 0.0280. See
example 3.1.9.
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Year US census data in millions Population prediction in millions

1790 3.929 3.929
1800 5.308 5.346
1810 7.240 7.255
1820 9.638 9.808
1830 12.866 13.195
1840 17.069 17.635
1850 23.192 23.3700
1860 31.443 30.635
1870 38.558 39.616
1880 50.156 50.388
1890 62.948 62.851
1900 75.996 76.681
1910 91.972 91.339
1920 105.711 106.132
1930 122.775 120.346
1940 131.669 133.373
1950 150.697 144.802
1960 179.323 154.455
1970 203.185 162.347
1980 226.546 168.630
1990 248.710 173.527

Table 3.1: US population census data between 1790 and 1990 and the accompanying prediction by the
logistic equation. The bold data at the top was all that was known to Verhulst in 1845.

https://www.census-charts.com/Population/pop-us-1790-2000.html
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Figure 3.3: Spruce budworm in moth and larval stages.

Example 3.1.10 Spruce budworm

Spruce budworm (see Figure 3.3) are preyed upon by spiders, miscellaneous insects, and birds. A
model for their population size, N is given by

Ṅ = RN

(
1− N

K

)
− BN2

A2 +N2
. (3.5)

1. What does each term in the equation mean?

2. Describe, with a sketch, three properties of the predation term

BN2

A2 +N2
. (3.6)

Hint: consider low, medium and high values of N .

3. Non-dimensionalise the equation to give the form

du

dτ
= ru

(
1− u

k

)
︸ ︷︷ ︸

f1(u)

− u2

1 + u2︸ ︷︷ ︸
f2(u)

. (3.7)

4. By sketching the two terms, f1 and f2 separately, show there are between 2 and 4 steady
states (depending on the values of (r, k)).

5. By considering the f1 − f2 sketches, characterise the steady state stabilities in all cases.

6. Spruce budworm destroys spruce trees and, so, we would like there population to be extinct.
However, what can happen if there is a large outbreak?
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1. [

Ṅ︸︷︷︸
Population evolution.

= RN

(
1− N

K

)
︸ ︷︷ ︸

Logistic growth, i.e. linear growth with competition.

− BN2

A2 +N2︸ ︷︷ ︸
Predation effects.

. (3.8)

]

2. [For low populations there is little predation. As the population grows, so does the predation.
The predation saturates at large population.]

3. [We have two degrees of freedom, N = [N ]u and t = [t]τ , so we need two balances. Com-
paring the original equation with the equation we want we see that the balances are]

Ṅ = RN

(
1− N

K

)
−BN2/

(
A2 +N2

)
, (3.9)

[which give the follows equalities:

[N ]

[t]
= B, [N ]2 = [A]2. (3.10)

Hence,

[N ] = A, [t] =
A

B
. (3.11)

Note that you have to be careful because the dimensions of the N2 in the numerator of the
predation fraction cancel with those in the denominator.

Substituting these into equation (3.5) we get

Bu̇ = R[N ]u

(
1− [N ]u

K

)
− B[N ]

A

u2

1 + u2
.

Divide through by B and replace [N ] with A to get

u̇ =
RA

B
u

(
1− Au

K

)
− u2

1 + u2
.

Finally, we can see that

r =
RA

B
, k =

K

A
. (3.12)

]

4. [See Figure 3.4. We approach the sketching via the following steps:]

• [Note any “obvious” crossings, i.e. u = 0, 1, or immediate parameter dependencies.
Here, we see that both terms cross at 0, thus, there is at least one steady state.]

• [Next, consider the derivatives at these obvious points. Namely, u2/(1 + u2) has 0
derivative at u = 0, whereas ru(1− u/k) has derivative r > 0 at u = 0. Thus, at least
for a small interval of u near zero, f2 > f1]

• [Consider the dynamics for large values of u. Here, f1 → 1, whilst f2 → −∞. ]
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• [Combining the two previous points that initially f2 > f1 but eventually f2 < f1 means
that there must be at least one more crossing for u > 0 (see left and right of Figure 3.4
in particular).]

• [Consider what each parameter does. Namely, k controls the width of the logistic
parabola of f1, whereas r controls the height. Playing around with multiple sketches,
we will eventually find the middle case of Figure 3.4.]

5. [By considering the bottom row of figures we can characterise the stability of the steady
states. Firstly, uc = 0 is always unstable. Whenever there two steady states uc1 = 0 and
the larger state uc2 > uc1 the larger steady state is always stable. Whenever there are four
steady states we denote them uc1 < uc2 < uc3 < uc4 and note that uc1 and uc3 are unstable,
whilst uc2 and uc4 are stable.]

6. [Unfortunately, the extinction state is never stable. Thus, trying to destroy them all is
futile because if any are left the will repopulate their species. In the case of a big outbreak,
r >> 1, which means that the population will evolve to the large population state. Even if
the growth rate, r, is returned to normal the population will remain at the larger population.
Thus, this system exhibits hysteresis, and r would have to be reduced beyond its original
value, before the population would collapse back to its original population.]

Figure 3.4: Parameter dependence of the Spruce budworm dynamics. r is increasing left to right. The
top images are plots of f1 and f2, whilst the bottom illustrates the phase plane (u, u̇ = f1 − f2).

3.1.1 Disease transmission

The study of infectious diseases has a long history and there are numerous, detailed models of a variety
of epidemics and epizootics (i.e. animal epidemics). We can only possibly scratch the surface. In the
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following, we consider a simple, framework, model but even this is capable of highlighting general
comments about epidemics and, in fact, approximately describe some specific epidemics.

Critically, one of the questions we will seek to answer is when is does a disease become an epidemic?
Once we have set up the mathematical description of the disease we will see that converting the idea
of an epidemic as an increasing number of infections will be fairly simple.

We consider a disease for which the population can be placed into 3 compartments:

• a Susceptible compartment, S, who can catch the disease.

• an Infective compartment, I, who have and transmit the disease.

• a Removed compartment, R, who have been isolated, or who have recovered and are immune to
the disease, or have died due to the disease during the course of the epidemic.

In order to derive the equations we make the following assumptions:

• The disease is of short duration course so that the population is constant (counting those who
have died due to the disease during the course of the epidemic).

• The disease has a negligible incubation period.

• If a person contracts the disease and recovers, they are immune (and hence remain in the removed
compartment).

• The numbers involved are sufficiently large to justify a continuum approximation.

Figure 3.5: Schematic view of a disease transmission. Susceptibles become infectious and, eventually,
become removed from the system.

The ‘dynamics’ of the disease can be described by applying a Law of Mass Action to

S + I
r→ 2I, (3.13)

I
a→ R, (3.14)

which provide the following ODEs: [

Ṡ = −rSI, (3.15)

İ = rSI − aI, (3.16)

Ṙ = aI. (3.17)

In terms of initial conditions we usually assume that there is no natural immunity, thus, R0 = 0
because no one has yet recovered, died, or otherwise been removed from the disease. The other initial
conditions, (S0, I0), are unknown and can be treated as a parameters, or fitted to data.]



CHAPTER 3. POPULATION MODELLING 32

Definition 12. A disease is classed as an epidemic if the number of infections is growing in the
population. Explicitly, and epidemic is occuring if İ > 0.

Example 3.1.11 SIR questions

Suppose we know the parameters r and a, which can be estimated from data then we develop
methods to approach the following key questions.

1. Noting that R decouples, construct a (S, I) phase plane with nullclines and dynamic arrows
to better understand the possible dynamics.

[See Figure 3.7(b).]

2. Will the disease spread, i.e. will the number of infectives increase, at least in the short-term?

[ This question is asking if the number of infectives will increase initially. The number of
infectives increases initially if and only if the derivative at time t = 0 is positive, rS0I0−aI0 >
0. Since I0 > 0 we can simplify this comment to the number of infectives increases initially
if and only if

rS0

a
> 1. (3.18)

]

Definition 13.

ρ =
S0r

a
(3.19)

is called the reproduction number. We can interpret ρ as the average number of secondary
infections that would be produced by one infective in a wholly susceptible population of size
S0.

Critically, we see here that an outbreak happens when ρ > 1, whilst the infection dies out
when ρ < 1.

3. What will be the maximum number of infectives at any given time?

(a) [Notice that Ṙ can be decoupled from the system since equations (3.15) and (3.16) are
independent of R.]

(b) [From question 1 if ρ < 1 then the number of infectives is decreasing, thus, in this case,
the maximum number is the initial number I0.]

(c) [If ρ > 1 then we have to do a bit more work. Namely, we have to evaluate Imax,
critically, we note that at I = Imax we must have İ = 0 meaning that at the maximum
point we have S = a/r. ]

(d) [Notice that dividing equation (3.16) by equation (3.15) gives

dI/ dt

dS/ dt
=

dI

dS
= −1 +

a

rS
, (3.20)

which can be integrated directly to∫ I

I0

dI ′ =

∫ S

S0

−1 +
a

rS′
dS′, (3.21)
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=⇒ I(t)− I0 = −S(t) + S0 +
a

r
ln

(
S(t)

S0

)
. (3.22)

]

(e) [By point 3c we substitute S = a/r into equation (3.22). Thus,

Imax = I0 +
a

r
− S0 +

a

r
ln

(
a

rS0

)
. (3.23)

(f) In summary

Imax =

{
I0 if ρ < 1,

I0 + S0 − a
r + a

r ln
(

a
rS0

)
if ρ > 1.

(3.24)

]

4. How many people in total catch the disease?

(a) [Note that all infectives become removed eventually, thus, the total number that catch
the disease is the total number of people in the removed category at the end of the
infection, i.e. far into the future. Call this number R∞.]

(b) [As time increases the number of infectives must eventually reduce because we have a fi-
nite population and at most everyone can have the infection once. Thus, limt→∞ I(t) =
0.]

(c) [Using equation (3.22)

lim
t→∞

I(t) = 0 = I0 − S∞ + S0 +
a

r
ln

(
S∞
S0

)
. (3.25)

]

(d) [From adding equations (3.15)-(3.17) we see that S + I + R = constant = N = total
population. Taking time to the two different limits of zero and infinity we can relate
the initial condition and final steady states through N , namely,

N = S0 + I0 = S∞ +R∞. (3.26)

Hence,
R∞ = N − S∞, (3.27)

where S∞ satisfies the following equation

0 = N − S∞ +
a

r
ln

(
S∞
S0

)
. (3.28)

Having derived equation (3.28), we must question the existence and uniqueness of
potential solutions.

To check that at least one root exists we first rearrange equation (3.28)

S∞ −
a

r
ln (S∞) = N − a

r
ln (S0) , (3.29)

where the right-hand side of equation (3.29) is just a constant. Thus, we have to sketch
the left-hand side of equation (3.29) to get an idea of what the solution looks like.]
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(e) [From Figure 3.6 we see that equation (3.28) can have 0 to 2 roots, with 1 root occurring
as a special case, which we will tend to ignore. Thus, our first job is to check that the
][case of no roots never exists. Namely, we must show that the minimum of S∞ −
a ln (S∞) /r is always less than (or equal to) N − a ln (S0) /r. Let

f(s) = s− a

r
ln(s) (3.30)

The minimum of equation (3.30) is where the derivative is zero. Thus,

f ′(s) = 1− a

rs
= 0 =⇒ s =

a

r
, (3.31)

is the location of the minimum and

f
(a
r

)
=
a

r
− a

r
ln
(a
r

)
(3.32)

is the minimum value. Note we should strictly check whether the critical point is a
minimum, maximum, or inflection. However, we will take it as given due to the sketches
we have generated.]

(f) [For a contradiction suppose

a

r
− a

r
ln
(a
r

)
> N − a

r
ln (S0) . (3.33)

Divide through by S0 and rearrange to get

a

rS0
− a

rS0
ln

(
a

rS0

)
>
N

S0
, (3.34)

which simplifies to
S0

N
>

ρ

1 + ln(ρ)
. (3.35)

]

(g) [Critically, we know that 1 ≥ S0/N . Further, by considering the shape of g(ρ) =
ρ/(1 + ln(ρ)) we can see that the minimum of g occurs at

g′(ρ) =
1 + ln(ρ)− 1

(1 + ln(ρ))2
= 0 =⇒ ρ = 1, (3.36)

where g(1) = 1. Hence we derive

1 ≥ S0

N
>

ρ

1 + ln(ρ)
≥ 1. (3.37)

Thus, by contradiction,
S0

N
≤ ρ

1 + ln(ρ)
, (3.38)

meaning

min
S∞

(
S∞ −

a

r
ln (S∞)

)
≤ N − a

r
ln (S0) (3.39)

and, so, equation (3.29) always has at least one root and probably two.]
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(h) [Now that we have existence we have to consider uniqueness. Namely, which of the two
roots of equation (3.29) do we require? To answer this we consider the (S, I) phase
plane. We note that I = 0 is a nullcline of S and I and that S = a/r is another nullcline
of I. Further, we note that S is always decreasing and I is decreasing (increasing) to
the left (right) of S = a/r as shown in Figure 3.7(a). The initial condition must
occur somewhere on the green dashed line in Figure 3.7(a) as this represents the total
population available.

From sketching trajectories with different initial conditions we will produce an image
similar to Figure 3.7(b). The solid black lines show the evolution of the simulation
from the initial data on the green line to I = 0. Extending the solutions ‘backwards’
in time we see there is a second disease free state, which corresponds to a ‘virtual’
population having never seen the disease. Thus, Figure 3.7(b) tell us exactly what the
two disease states mean, the larger value is before the disease and the lower values is
after the disease. Critically, we need S∞ to be the value after the disease, thus, S∞ is
always the smallest root of equation (3.29).]

Figure 3.8 shows the SIR model fitted to the COVID-19 pandemic from 2020, for cases in the UK.
Although there were many papers published in the months after the virus started to spread they all,
pretty much, showed the same thing. This is why the SIR model is so powerful. It is simple, predictive
and accurate. However, in the early stages on infection the fitting will be very sensitive.

Note that we do not get the data in the exact (S, I,R) form of the equations. Rather, the daily
statistics provided the number of new cases each day, this is the top bar chart. The cumulative sum of
this data (which is approximately the integral) should be C = I+R, this is the circle data in the bottom
graph. We fit to this data (solid line in the bottom graph) to extract out the following predictions
r = 3.34 × 10−6/(person×day), a = 0.537/day, I0 = 22 people, ρ = 1.36 and R∞ = 105, 308 people,
where the total population of the UK is N = 218, 829 people. We then use these fitted parameter
values to estimate the data in the top graph (solid line) using dC/dt, since the new cases data should
approximate the derivative of C over time. We could fit the new cases data directly. However, as seen
in Figure 3.8, this data is noisier than its cumulative summation, thus, fitting to I+R should be more
robust to noise and provide a more accurate fitting.

Figure 3.6: Sketching the lines S∞ and a ln(S∞)/r allows us to sketch S∞ − a ln(S∞)/r.
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(a) (b)

(c)

Figure 3.7: Various methods for viewing the dynamics of the SIR system, equations (3.15)-(3.17) with
r = 1/1000/(person×day) and a = 2/day. The (S, I) phase plane schematic is shown in (a) and is
illustrated with trajectories in (b). All initial conditions are on the green dashed line and, thus, the
solid lines in (b) are the forward time trajectories, whilst the dashed lines are the backward time
trajectories. The four figures in (c) illustrate the (S, I,R) populations of each trajectory in the (b)
phase plane. The susceptible (infected) initial condition increases (decreases) left to right.
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Figure 3.8: Fitting the SIR model the the UK data of new cases from the 2020 COVID-19 pandemic
between the 22nd January and 5th April. The top image shows the raw data as a bar chart. The
bottom fits I + R (the line) to the cumulative sum of the top data (circles). This provides estimates
for the SIR parameters, which are then used to fit the prediction to the top image.

3.2 Discrete modelling

ODEs are one method by which we can model populations. Critically, one of the main assumptions is
that the population is dynamically changing in continuous time. This implies that there is a continuous
overlap of generations. However, many species have little to no overlap between successive generations
and so population growth is in discrete steps.

For example a species of cicada known as the Magicicada neotredecim spends almost the full length
of its life underground. In the spring of their 13th year the cicadas all appear synchronously and in
tremendous numbers. The cicadas develop, mate and die, such that within two months of the original
emergence, their life-cycle is complete and the juvenile insects stay underground for another 13 years.

In this case, it would be pointless tracking the population in continuous time. Instead, all we
would want to know is how the population at the current time depends on the population 13 years
ago. Namely, we would want to construct a function f , such that

Nt = f(Nt−13). (3.40)

In the models we discuss in this chapter we have scaled the time-step to be 1. Models must thus
relate the population at time t + 1, denoted by Nt+1, in terms of the population Nt at time t. This
leads us to study difference equations, or discrete models, of the form

Nt+1 = f(Nt), (3.41)
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where f(Nt) is, in general, a nonlinear function of Nt. Such equations are usually impossible to solve
analytically but again we can extract a considerable amount of information about the population
dynamics without an analytical solution.

Example 3.2.12 A simple discrete population evolution

Consider
Nt+1 = rNt, N0 = n0. (3.42)

[Because equation (3.42) is linear we can actually provide a solution in closed form. Specifically,
we simply iterate the equation back until t = 0, i.e.

Nt+1 = rNt = r2Nt−1 = r3Nt−2 = · · · = rt+1N0 = rt+1n0. (3.43)

Thus

|Nt| →

 ∞ |r| > 1,
|n0| |r| = 1,
0 |r| < 1.

(3.44)

Further, we note that if r ≥ 0 the trajectories are monotonic, whereas the trajectories oscillate if
r < 0, because rn flips between positive and negative as n consecutively increases. ]

(a) (b)

Figure 3.9: Plotting the solution of equation (3.42) with varying values of r. The negative values of r
are shown in (a), whilst the positive values are shown in (b).

Definition 14. An steady state N∗ of a discrete population model satisfies

N∗ = f(N∗). (3.45)

Such points are also called fixed points, stationary points, or equilibrium points. There are analogous
to ODE steady states.

As you might expect, if we have a steady state then we also would like to know if it is stable or not.
Namely, similar to ODEs, does a small perturbation away from N∗ decay to zero, or does it grow?

Before we answer this question we gain more insight into these equations through plotting their
dynamics using a process called cobwebbing.
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3.2.1 Cobwebbing

The dynamic evolution of Nt of the general difference equation (3.41) can be obtained graphically
through the following algorithm.

1. Create a set of Cartesian axes with Nt along the x-axis and Nt+1 along the y-axis.

2. Draw the diagonal line Nt = Nt+1 and sketch the function f , where Nt+1 = f(Nt).

3. Mark N0 on the Nt axis. The point N1 is then given by moving vertically until we intersect the
f curve. Specifically, this is the point N1 = f(N0).

4. From the point f(N0) we move horizontally until we intersect the line Nt+1 = Nt, which projects
us onto the Nt-axis at N1.

5. The process is repeated from line 3 until we can predict the future dynamics of the cobweb map.

Critically, not only will this method provide a quick method of plotting the dynamics of population
equation it also provides a means of visualising the steady states. Explicitly, the steady states are
where the Nt+1 = f(Nt) curve intersects the line Nt+1 = Nt.

Example 3.2.13 Cobwebbing the discrete logistic equation

For a generalisation of logistic growth, consider

Nt+1 = rNt(1−Nt), N0 = n0. (3.46)

where 0 < n0 < 1. Apply the cobwebbing method to equation (3.46) for different values of r.
What happens?

[We note a number of features of equation (3.46), which is cobwebbed in Figure 3.10:

• If n0 > 1 the second iterate goes negative, thus, the model may not be useful for modelling
populations in such conditions.

• The steady states of equation (3.46) are N∗ = 0 and 1− 1/r.

• N∗ = 1− 1/r > 0 only makes sense when r > 1.

• The dynamics of the trajectories depend on r. Namely, Figure 3.10(a) demonstrates that
N∗ = 0 can be stable (r < 1), or unstable (r > 1).

• Further, considering the top row of Figure 3.10(a) from left to right shows that N∗ = 1−1/r
can not exist, be stable, or be unstable, respectively.

• In the case that r = 3, although both steady states are unstable, we have an oscillatory
state.

• If r is pushed higher we can get chaotic trajectories, as seen in Figure 3.10(b).

]

3.2.2 Stability of discrete equations

Similar to continuous systems, finding steady states is only one half of the story. We would like to
know whether a steady state is stable or not.
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(a)

(b)

Figure 3.10: Multiple cases of the discrete logistic equation for different values of r. (a) Top row,
cobweb diagrams with r = 0.9, 1.5 and 3, left to right, respectively. The accompanying trajectories
are plotted in the the bottom image. (b) An example of chaotic dynamics when r = 3.6. Left, cobweb
diagram. Right, trajectory..
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Definition 15. A steady state, N∗, of Nt+1 = f(Nt) is stable if ∀ε > 0 ∃δ, T > 0 such that whenever
|Nt −N∗| < δ then |Nt −N∗| < ε ∀t > T . Otherwise the state is unstable.

Similar to the continuous system, the proof behind the criterion for stability depends upon lin-
earising the system. Namely, we expand the system near a steady state and ask whether a small
perturbation will grow, or decay.

Theorem 3.2.1. Suppose N∗ is a steady state of the discrete equation

Nt+1 = f(Nt) (3.47)

and assume that f ′(N∗) 6= 0. N∗ is stable if |f ′(N∗)| < 1 and unstable if |f ′(N∗)| > 1. Further,
near N∗, in either case of stability, the trajectories are monotonic if f ′(N∗) > 0 and oscillatory if
f ′(N∗) < 0.

Proof. [Since N∗ is a steady state, consider the trajectory of Nt = N∗ + εt, where 0 ≤ |ε0| � 1.
Substituting Nt into equation (3.47) we generate

Nt+1 = N∗ + εt+1,

= f(Nt),

= f(N∗ + εt). (3.48)

Expanding f around εt gives

f(N∗ + εt) ≈ f(N∗) + f ′(N∗)εt + h.o.t. (3.49)

and we note that N∗ = f(N∗), by definition. Combining equations (3.48) and (3.49) gives

N∗ + εt+1 = N∗ + f ′(N∗)εt. (3.50)

Thus, upon simplifying, the perturbation is governed, approximately, by

εt+1 = f ′(N∗)εt. (3.51)

By considering example 3.2.12 the proof is complete. Explicitly, the size of the perturbation, |εt|, grows
if |f ′(N∗)| > 1, meaning that N∗ is unstable. Alternatively, |εt|, shrinks if |f ′(N∗)| < 1, meaning
that N∗ is stable. Equally, the trajectories are monotonic (oscillate) in the case that f ′(N∗) > 0
(f ′(N∗) < 0). Note that this is only true in the ε expansion around the steady state.]

Example 3.2.14 Discrete logistic equation revisited

As noted in example 3.2.13 the steady states of the discrete logistic equation are N∗ = 0 and
1 − 1/r. Suppose we only consider the case when r > 0. Characterise the linear stability of the
two steady states.

[As stated in Theorem 3.2.1 we need to consider the derivative of f(N) = rN(1 − N) at the
steady states. Specifically, f ′(N) = r − 2rN , thus, f ′(0) = r and f ′(1− 1/r) = 2− r. Hence, the
steady state N∗ = 0 always exists, but is only stable for −1 < r < 1. Since r > 0 by restriction
we have that N∗ = 0 is stable 0 < r < 1 and unstable when r > 1.

N∗ = 1− 1/r only exists when r ≥ 1 and is stable only when |2− r| < 1,

1 >|r − 2|,
=⇒ 1 >r − 2 > −1,

=⇒ 3 >r > 1.

Combining all these inequalities, we see that N∗ = 1− 1/r exists and is stable for 1 < r < 3 and
][is unstable when r > 3. All of this information can be illustrated in a bifurcation diagram, as
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seen in Figure 3.11.]

Figure 3.11: Bifurcation diagram of the discrete logistic equation (3.46). On the left we see the derived
regions of stability for N∗ = 0 and 1 − 1/r (black line) from example 3.2.14. In example 3.2.15 we
will also derive the values and region of stability of the period 2 oscillatory states (red line). However,
the derivation of the activity in the blue region is outside the scope of the course, although we can
simulate it easily. The right image shows a magnification of the region 3.5 < r < 4, which illustrates
that the discrete logistic system can produce a chaotic trajectory.

3.2.3 Oscillatory states in discrete equations

Definition 16. We define the pth iterate of a map to be the pth time step. Namely

fp(Nt) = f(f(. . . f︸ ︷︷ ︸
p times

(Nt) . . . )) = Nt+p. (3.52)

Definition 17. A state, N∗, has an oscillatory period p if p is the smallest integer such that N∗ =
fp(N∗).

Theorem 3.2.2. Suppose Nt+1 = f(Nt) has a oscillatory point, N1∗, of period p. Then there are also
p− 1 distinct points that have oscillatory period p.

Proof. [Consider the points N1∗, N2∗ = f(N1∗), N3∗ = f(N2∗) = f2(N1∗), . . . , Np∗ = f(N (p−1)∗) =
f (p−1)(N1∗). By assumption N1∗ = f(Np∗) and by definition

fp(N i∗) = fp(f i−1(N1∗)) = f i−1(fp(N1∗)) = f i−1(N1∗) = N i∗ (3.53)

for all 1 ≤ i ≤ p. Thus, N i∗ does evaluate to itself after p iterations. Finally, we have to show that
fq(N i∗) 6= N i∗ for q < p. For a contradiction suppose that for some 1 < i ≤ p − 1 there does exist
q < p such that fq(N i∗) = N i∗. Then

fp+1−i(fq(N i∗)) = fp+1−i(N i∗), (3.54)

but
fp+1−i(N i∗) = fp(N1∗) = N1∗ (3.55)

and
fp+1−i(fq(N i∗)) = fp+q(N1∗) = fq(N1∗). (3.56)

However, by definition fq(N1∗) 6= N1∗ for q < p. Hence, by contradiction the proof is complete.]
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Definition 18. The orbit of an oscillatory point, N1∗ with period p, of a map f , is the set of points
{N1∗, N2∗ = f(N1∗), N3∗ = f(N2∗) = f2(N1∗), . . . , Np∗ = f(N (p−1)∗) = f (p−1)(N1∗)}.

As seen in figures 3.10(a) and 3.11, when r increases past 3 there is no longer a single steady
state. Rather the system undergoes a bifurcation to an oscillatory trajectory of period 2. Further,
Figure 3.11 shows that around r ≈ 3.5 the system bifurcates again into a period 4 oscillation. As r
increases further a cascade of bifurcations happen leading to states with higher periods of oscillations,
demonstrating that that the discrete logistic system can produce chaotic trajectories.

As you might expect, understanding the full chaotic region is extremely complicated. However,
we can move beyond just the steady states to consider the simple oscillatory states. For example,
suppose a system has a period 2 oscillation, i.e. there are two (non-equal) states, N∗1 and N∗2 , such
that N∗1 = f(N∗2 ) and N∗2 = f(N∗1 ). Each state is then a steady state of f2, i.e.

f2(N∗1 ) = f(f(N∗1 )) = f(N∗2 ) = N∗1 . (3.57)

Theorem 3.2.3. If N∗ is an oscillatory state of f , of period p, it is a steady state of fp.

Proof. Practically by definition.

Theorem 3.2.4. Suppose N∗ is an oscillatory state of period m, where m is a factor of p then N∗ is
also a steady state of fp.

Proof. [By definition N∗ = fm(N∗) and by assumption there exists a positive integer n such that
p = mn. Hence

fp(N∗) = fmn(N∗),

= fm(fm(. . . fm︸ ︷︷ ︸
n times

(N∗) . . . )),

= N∗.

]

From theorems 3.2.3 and 3.2.4 we have a way of finding periodic states. From stability theorem
3.2.1 we also have a way of characterising the stability of a period p oscillation, namely, xp is a stable
period p oscillation of the map f if xp is a stable state of the map fp. Explicitly,

xp is

 stable if
∣∣∣ dfp(xp)

dx

∣∣∣ < 1,

unstable if
∣∣∣ dfp(xp)

dx

∣∣∣ > 1.
(3.58)

However, calculating dfp(xp)/ dx often requires difficult algebraic manipulations. Thankfully, the
following theorem simplifies the issue.

Theorem 3.2.5. Let x1∗ be a period p oscillation of f then

dfp(x1∗)

dx
= f ′(x1∗)f ′(x2∗)f ′(x3∗) . . . f ′(xp∗), (3.59)

where xi∗ = f i−1(x1p).

Proof. [By the chain rule if g(x) and h(x) are two well-behaved functions with derivatives g′(x) and
h′(x), respectively, then

dg(h(x))

dx
= g′(h(x))h′(x). (3.60)

Applying this iteratively to fp(x) = f(f(. . . f(x) . . . )) we derive

dfp(x)

dx
= f ′(x)f ′(f(x))f ′(f2(x)) . . . f ′(fp−1(x)). (3.61)

Evaluating equation (3.61) at x = x1∗ provides the required result.]
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Thus, instead of evaluating the derivative of the pth iteration map we need only calculate the
derivative of the original map and evaluate it at all period p steady states. This evaluation may not
be easier, but it should be easier that evaluating the derivative of the pth iteration map. This also
then leads to the following observation

Corollary 3.2.6. The stability of all periodic points in the same orbit is the same, namely,

dfp(x1∗)

dx
=

dfp(x2∗)

dx
= · · · = dfp(xp∗)

dx
. (3.62)

Proof. [By considering equation (3.61) and noting that f i(xj∗) = f(x(i+j)∗) we can see the right-hand
side of dfp(xj∗)/ dx will be just be permutation of the terms of dfp(x1∗)/ dx. Thus, the product
will be the same.]

Example 3.2.15 Period 2 oscillations in the discrete logistic equation

Derive the period two oscillation states specifying their existence and stability dependence on r.
[Using the insights from the above discussion and theorems to extract the period 2 oscillatory

states we need to consider the second iteration of the discrete logistic equation. Namely, if

Nt+1 = rNt(1−Nt) = f(Nt)

then we need to consider the steady states of f2. Since f is a quadratic then f2 will be a quartic.
These are difficult to solve. However, by Theorem 3.2.4 we know two of the roots. Namely, the
steady states of f (N∗ = 0, 1− 1/r) will also be steady states of f2. Since we know two roots, we
can factor these out of the quartic, leaving only a quadratic needing to be factored, which we can
easily work with.

Thus, we need to consider the steady states of f2,

N = f2(N) = f(f(N)),

= rf(N)(1− f(N)),

= r[rN(1−N)](1− [rN(1−N)]),

= r2N(1−N)(1− rN(1−N)). (3.63)

Rearranging equation (3.63) and factoring the N∗ = 0 root gives

0 = N(r2(1−N)(1− rN(1−N))− 1),

= N(r2(1−N)(1− rN + rN2)− 1),

= N(r2(1− rN + rN2 −N + rN2 − rN3)− 1),

= N(r2 − 1− r2(r + 1)N + 2r3N2 − r3N3). (3.64)

As mentioned, we further know that 1− 1/r is a root, meaning that there are some values of a, b
and c such equation (3.64) has the following form

0 = N(N − [1− 1/r])(a+ bN + cN2), (3.65)

= N(−a(r − 1)/r + (ar − br + b)N/r + (br − cr + c)N2/r + cN3). (3.66)

Comparing equations (3.64) and (3.66) we immediately see that

a = − (r2 − 1)r

r − 1
= −(r + 1)r and c = −r3. (3.67)
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][and

2r3 =
br − cr + c

r
,

=
br + r4 − r3

r
,

= b+ r3 − r2, (3.68)

=⇒ b = r2 + r3 = r2(1 + r). (3.69)

Substituting equations (3.67) and (3.69) into equation (3.65) we generate

0 = N(N − [1− 1/r])(−r(r + 1) + r2(1 + r)N − r3N2). (3.70)

Thus, the period two steady states satisfy

0 = −r(r + 1) + r2(1 + r)N − r3N2.

0 = r2N2 − r(1 + r)N + (r + 1). (3.71)

=⇒ N± =
r(1 + r)±

√
r2(1 + r)2 − 4r2(r + 1)

2r2
,

= (1 + r)
1±

√
1− 4/(r + 1)

2r
. (3.72)

Critically, we must have 1− 4/(r+ 1) > 0 for the states to be valid i.e. r > 3. Hence, these states
appear as the N∗ = 1 − 1/r destabilize. But are they stable? To answer this question we must
consider the size of

f2′(N±) =
d

dN

(
r2N(1−N)(1− rN(1−N))

)
|N=N± . (3.73)

The above derivative could be calculated, but we will use Theorem 3.2.5. Namely

f2′(N±) = f ′(N+)f ′(N−). (3.74)

We have already calculated f ′ = r − 2rN in example 3.2.14, so,

f2′(N±) =r2(1− 2N+)(1− 2N−),

=r2(1− 2(N+ +N−) + 4N+N−),

=r2

(
1− 2

(1 + r)

r
+ 4

r + 1

r2

)
,

=− r2 + 2r + 4. (3.75)

For stability we need |f2′(Nt)| < 1 and we note that r > 3 for the roots to exist. Hence,

1 > −r2 + 2r + 4,

=⇒ 0 < r2 − 2r − 3 = (r − 3)(r + 1). (3.76)
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][Considering the sign of the quadratic we must have the r > 3, or r < −1, thus, r > 3. Further,
we must also satisfy

−1 < −r2 + 2r + 4,

=⇒ 0 > r2 − 2r − 5,

=⇒ r ∈ [1−
√

6, 1 +
√

6]. (3.77)

Combining this information with the previous inequality, the period 2 oscillations (3.72) are stable
for r ∈ [3, 1 +

√
6]. Figure 3.11 illustrates the states (3.72) and the region of stability in red.]

3.3 Check list

By the end of this chapter you should be able to:

� reproduce all definitions;

� state and prove all theorems, where proofs are given;

� construct ODE models from descriptions;

� manipulate and investigate ODE models using combinations of methods from Chapter 2 to solve
specific questions;

� generalise presented results to variations of the SIR model;

� derive steady states and oscillatory states from discrete time population equations;

� use cobwebbing to suggest the stability of steady states from discrete time population equations;

� characterise the stability of steady states and oscillatory states from time discrete population
equations;



Chapter 4

Spatial systems

So far we have considered biological phenomena with negligible spatial variation. Many times, however,
space is very importnant. For example, in ecological contexts you do not normally find predator and
prey living together; animals often have to leave their home roosts to find food, wolves, for example.

An alternative example can be seen in the interactions of grey and red squirrels in the UK. Here,
one species invades another’s territory. Modelling helps us understand how the populations will evolve,
e.g. will one populations win out, or will the populations eventually separate the land and coexist?
Equally, the modelling can inform us of how to reduce the invasive risk of the population.

There are two main forms of motion we are going to consider, random motion and directed motion.

Definition 19. Diffusion is the random movement of system agents. (see Figure 4.1(a))

Definition 20. Taxis is the directed movement of system agents. (see Figure 4.1(c))

Note there are many forms of taxis, specifying what is causing the directional motion for example:

• chemotaxis is when the agents move up (chemoattractant) or down (chemorepellent) a chemical
gradient.

• galvanotaxis is movement induced by electric fields.

• gravitaxis is movement that responds to gravity.

4.1 Deriving the diffusion equation

We will first derive the equation behind diffusion, then taxis. Further, in each case, we consider motion
in the infinite domain case and then add boundaries, as these are minor complications that modify the
main derivation.

All derivations follow the process of discretising a continuum population. The separation between
the discretised points is then taken to zero in an appropriate limit leading to the desired equation.

Theorem 4.1.1. The model for random motion of a population u on an infinite line is

∂u

∂t
= D

∂2u

∂x2
, (4.1)

where D is defined to be the diffusion coefficient, a positive constant that specifies the rate at which the
population spreads out.

Note that since there are no boundaries we do not need to consider boundary conditions. However,
an initial condition needs to be supplemented to close the model, fully. See Figure 4.4(a) for an
illustrated example.

47
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(a)

(b) (c)

Figure 4.1: Illustrating (a) diffusion, (b) chemotaxis and (c) actual chemotaxis. In (a), as long as
the water is not stirred, or heated, the ink will undergo diffusion. The ink has no directed motion,
the water and ink particles bump together causing the ink to spread out to a homogeneous state. In
(c) slime mould cell (dictyostelium) is attracted to a pipette full of cyclic adenosine monophosphate
(cAMP).

Proof. [Consider an infinite one-dimensional interval on which a population, u(x, t), is diffusing. Con-
sider a discretised form of u that is evaluated at points xi, where i is an integer label and xi+1 = xi+∆x.
For simplicity, u(xi, t) = ui. The population at each point is able to transition to their neighbours
at a rate proportional to their concentration, with proportionality constant d = D/∆x2. In terms of
reaction terminology this is

. . .
d−⇀↽−
d
ui−1

d−⇀↽−
d
ui

d−⇀↽−
d
ui+1

d−⇀↽−
d
. . . . (4.2)

Due to the symmetry of the problem we can isolate just the ith population. Namely, using the Law of
Mass Action, the accompanying infinite set of coupled ODEs would be

∂ui
∂t

= dui−1 − 2dui + dui+1, (4.3)

where we note that we are using a partial derivative as u is a function of multiple variables.
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We now use Taylor’s theorem to expand in ∆x,

ui−1 = u(xi−1, t) = u(xi −∆x, t) ≈ u(xi)−∆x
∂u

∂x
(xi, t) +

∆x2

2

∂2u

∂x2
(xi, t) + h.o.t., (4.4)

ui+1 = u(xi+1, t) = u(xi + ∆x, t) ≈ u(xi) + ∆x
∂u

∂x
(xi, t) +

∆x2

2

∂2u

∂x2
(xi, t) + h.o.t., (4.5)

where we expand to second order, rather than the normal first order. Substituting equations (4.5) and
(4.4) into equation (4.3) we generate

∂ui
∂t

= d∆x2 ∂
2ui
∂x2

. (4.6)

Finally, we substitute d = D/∆x2 and let ∆ → 0, at which point we stop dealing with a discretised
line and consider the continuum. Thus, the diffusion equation is

∂u

∂t
= D

∂2u

∂x2
. (4.7)

]

Figure 4.2: Diffusion schematic.

We now consider boundary conditions. Specifically, there are three main types: Dirichlet, Neumann
and Robin (all named after dead mathematicians).

Definition 21. Dirichlet boundary conditions fix the value of the variable on the boundary to be a
constant.

For example, u(0, t) = α and u(L, t) = β, for α, β ≥ 0 are perfectly valid Dirichlet boundary
conditions for the one-dimensional diffusion equation. See Figure 4.4(c) for an illustrated example.

Definition 22. Neumann boundary conditions fix the value of the variable’s derivative on the boundary
to be a constant.
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For example,
∂u(0, t)

∂x
= α and

∂u(L, t)

∂x
= β (4.8)

are perfectly valid Neumann boundary conditions for the one-dimensional diffusion equation.

Definition 23. Robin boundary conditions fix a linear combination of the variable’s value and deriva-
tive on the boundary to be a constant.

For example,

α1u(0, t) + α2
∂u(0, t)

∂x
= α3 and β1u(L, t) + β2

∂u(L, t)

∂x
= β3 (4.9)

are perfectly valid Robin boundary conditions for the one-dimensional diffusion equation.
Although there are infinitely more we will generally only consider the first two. Equally, a system

is able to have different boundary conditions on each boundary.
Critically, the Neumann boundary conditions model the flux in, and out, of the domain. We will

now show that when we consider an insulated domain (in which no substance enters of leave through
the boundary) then we are considering the specific case of Neumann boundary conditions in which
α = β = 0 in equation (4.8). These are specifically called zero-flux, or reflective boundary conditions.

Theorem 4.1.2. Consider a diffusing population in a finite one-dimensional domain, [0, L]. Further,
suppose this substance is unable to leave the domain when zero-flux boundary conditions are applied.
We will show that the mathematical model of this situation is

∂u

∂t
= D

∂2u

∂x2
, (4.10)

supplemented with the boundary conditions

∂u(0, t)

∂x
=
∂u(L, t)

∂x
= 0. (4.11)

As above, an initial condition needs to be supplemented to close the model, fully. See Figure 4.4(b) for
an illustrated example.

Proof. [We consider a similar set up to Theorem 4.1.1. Namely, we consider a discretised domain of
N+1 points ∆x = L/N apart such that population u evaluated at point xi is ui = u(xi, t) = u(i∆x, t).
However, the domain is now finite, so we explicitly specify what happens at the first and last points,
x0 = 0 and xN = L (see Figure 4.3). The reaction terms will be

u0
d−⇀↽−
d
u2

d−⇀↽−
d
. . .

d−⇀↽−
d
ui−1

d−⇀↽−
d
ui

d−⇀↽−
d
ui+1

d−⇀↽−
d
. . .

d−⇀↽−
d
uN−1

d−⇀↽−
d
uN , (4.12)

which (using the Law of Mass Action) will provide an ODE system of the form

∂u0

∂t
=du1 − du0,

∂ui
∂t

=dui−1 − 2dui + dui+1,

∂uN
∂t

=duN−1 − duN .

As before we use Taylor’s series (see equations (4.4) and (4.5)) to generate

∂u

∂t
(0) =

D

∆x

∂u

∂x
(∆x), (4.13)

∂ui
∂t

=D
∂2ui
∂x2

,

∂u

∂t
(N∆x) =

D

∆x

∂u

∂x
((N − 1)∆x), (4.14)
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where we note we only have to go to first order to derive equations (4.13) and (4.14). Finally, rearrang-
ing equations (4.13) and (4.14) and taking ∆x → 0 and N → ∞ such that N∆x = L stays constant,
allows us to derive

0 =
∂u

∂x
(0),

∂u

∂t
=D

∂2u

∂x2
,

0 =
∂u

∂x
(L),

as required.]

Figure 4.3: Diffusion schematic within an insulated domain.

Theorem 4.1.3. Consider a one-dimensional diffusing population. In the case of a zero-flux boundary
conditions, the population total does not change.

Proof. [Intuitively, this makes sense as the population is simply spreading out over the domain. No
population is being created or destroyed. Nor is any allowed to leave the domain in the finite interval
case. Thus, we would hope that this were true.

To show that the proposition is true we simply integrate the population over space and demonstrate
that its time derivative is zero. Hence, the population remains constant over time. Namely, we begin
by integrating the diffusion equation between L0 and L∞,∫ L∞

L0

∂u

∂t
dx =

∫ L∞

L0

D
∂2u

∂x2
dx. (4.15)

The time derivative and spatial integration commute and we can directly integrate the right-hand side
of equation (4.15). We, thus, derive

d

dt

∫ L∞

L0

u dx = D

[
∂u

∂x

]L∞
L0

, (4.16)

where the left-hand side of equation (4.16) is the time derivative of the total amount of u in the domain
and the derivatives are explicitly zero in the zero-flux case (see equation (4.11)).]
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(a) (b) (c)

Figure 4.4: Illustrating diffusion on (a) an infinite domain, (b) a finite domain with zero-flux boundaries
and (c) a finite domain with zero-Dirichlet boundaries. Parameter value D = 1 in all cases. The initial
condition in all cases was u(x, 0) = exp(−((x− 1/2)10)2).

4.2 Deriving the taxis equation

In the last section we saw that the diffusion equation required the second spatial derivative. The
derivation of the taxis equations follow exactly the same argument, but we will see that the taxis
equation only requires the first spatial derivative. This is simpler to derive, but we started with the
more complicated equation because we will be using diffusion more often and it was important to get
ourselves used to the derivation argument.

Theorem 4.2.1. Consider a one-dimensional domain filled with a population u that is subject to two
different spatially dependent forces. One force attracts the population to the left, causing a flux of
movement at a rate, dl(x) = Dl(x)/∆x, whilst the other attracts the population to the right, causing a
flux of movement at a rate dr(x) = Dr(x)/∆x. The equation controlling the populations evolution is
then

∂u

∂t
=
∂ ([Dl(x)−Dr(x)]u)

∂x
. (4.17)

Since we are on an infinite domain we simply have to assume that the solution stays finite and initial
conditions are required to close the solution.

Proof. [Consider the standard set up. Namely, consider a discretised population u where each point
is separated by ∆x containing a population (see Figure 4.5). The reaction terms will be

. . .
dr(xi−2)−−−−−⇀↽−−−−−
dl(xi−1)

ui−1

dr(xi−1)−−−−−⇀↽−−−−−
dl(xi)

ui
dr(xi)−−−−−⇀↽−−−−−
dl(xi+1)

ui+1

dr(xi+1)−−−−−⇀↽−−−−−
dl(xi+2)

. . . , (4.18)

which (using the Law of Mass Action) will provide an ODE system of the form

∂ui
∂t

=dl(xi+1)ui+1 − dl(xi)ui + dr(xi−1)ui−1 − dr(xi)ui, (4.19)

As before we use Taylor’s series. Although we only need to expand to first order, we need to expand
both the movement rates and the positions,

dl(xi+1) = dl(xi + ∆x) ≈ dl(xi) + ∆x
∂dl
∂x

+ h.o.t, (4.20)

dr(xi−1) = dr(xi −∆x) ≈ dr(xi)−∆x
∂dr
∂x

+ h.o.t, (4.21)

ui−1 = u(xi −∆x, t) ≈ u(xi)−∆x
∂u

∂x
+ h.o.t., (4.22)

ui+1 = u(xi + ∆x, t) ≈ u(xi) + ∆x
∂u

∂x
+ h.o.t.. (4.23)
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Substituting equations (4.20)-(4.23) into equation (4.19) gives

∂ui
∂t
≈
(
dl(xi) + ∆x

∂dl
∂x

)(
u(xi) + ∆x

∂u

∂x

)
− dl(xi)ui

+

(
dr(xi)−∆x

∂dr
∂x

)(
u(xi)−∆x

∂u

∂x

)
− dr(xi)ui

≈∆xui
∂dl
∂x

+ ∆xdl(xi)
∂ui
∂x
−∆xui

∂dr
∂x
−∆xdl(xi)

∂ui
∂x

,

≈ui
(
∂Dl

∂x
− ∂Dr

∂x

)
+ (Dl(xi)−Dr(xi))

∂ui
∂x

,

≈∂ ([Dl(xi)−Dr(xi)]ui)

∂x
.

Upon taking ∆x→ 0 we achieve the stated result.]

Figure 4.5: Taxis schematic.

4.3 Travelling waves

In previous chapters we have developed a theoretical framework of interacting species. Such interactions
can simply be added to models of spatial motion. Namely, if f(u, v) and g(u, v) are interaction kinetics
for populations u and v then

∂u

∂t
=Du

∂2u

∂x2
+ f(u, v), (4.24)

∂v

∂t
=Dv

∂2v

∂x2
+ g(u, v), (4.25)

would be a one-dimensional spatial extension of the reaction kinetics, assuming that populations u
and v diffused with rates Du and Dv, respectively.
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Figure 4.6: Illustrating taxis on a finite domain with zero-flux boundary conditions with Dl = x and
initial condition u(x, 0) = exp(−((x− 0.5)10)2).

However, before we consider the possibilities of two interacting populations, we consider the simple
example of combining logistic growth and diffusion in one spatial dimension. Critically we are going
to look conditions under which Fisher waves can form

Definition 24. A Fisher wave is a specific form of travelling wave solution that translates in space at
a constant speed over time, without changing its shape.

4.3.1 Fisher’s equation

Example 4.3.16 Fisher waves in Fisher’s Equation

Consider the following system

∂u

∂t
= D

∂2u

∂x2
+ ru

(
1− u

K

)
, (4.26)

on an infinite domain, subject to the following boundary and initial conditions:

u(x, t)→ u±∞ as x→ ±∞ and u(x, 0) = u0(x). (4.27)

where u±∞ are constants to be determined and u0(x) is any function satisfying the boundary
conditions. This equation is known as Fisher’s equation and it was first proposed to model the
spread of an advantageous gene through a population.

We will show that Fisher waves, as defined in definition equation (24), can be supported by
equation (4.26). We will be led by our intuition of what we expect the waveform to look like (see
Figure 4.7). Namely, from our understanding of the logistic equation any small perturbation to
zero leads the population to grow to the carrying capacity. Thus, we expect that large populations
will invade small populations until everywhere is at u = K.

1. [We, firstly, need to derive what boundary conditions would be consistent with equation
(4.27). Since u±∞ are constant “at infinity” this means the spatial and temporal derivatives
are zero at the boundaries. Namely, the values must satisfy

0 = u±∞

(
1− u±∞

K

)
. (4.28)
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] [Thus, u±∞ = 0, or K, meaning that the final solution forms are heavily restricted in what
their boundary values can be.]

2. [We want the wave-form solution to move with constant speed. This suggests that we convert
to using moving wave coordinates, z = x − ct, where z is travelling wave coordinate and c
is a constant velocity. Note that we assume without loss of generality that c > 0. If c < 0
then the wave is simply going in the opposite direction. Critically, we have introduced a
new variable and, thus, we must derive conditions on the form c must take.

Using z = x− ct the derivatives become

∂u

∂t
=
∂u

∂z

∂z

∂t
+
∂u

∂t

∂t

∂t
,

=− c∂u
∂z

+
∂u

∂t
, (4.29)

and

∂u

∂x
=
∂u

∂z

∂z

∂x
+
∂u

∂x

∂t

∂x
,

=
∂u

∂z
,

=⇒ ∂2u

∂x2
=
∂2u

∂z2
. (4.30)

Substituting equations (4.29) and (4.30) in equation (4.26) we generate

∂u

∂t
− c∂u

∂z
= D

∂2u

∂z2
+ ru

(
1− u

K

)
. (4.31)

Equally, we want the wave to move without it changing its shape. This means that the wave
should be stationary in the moving coordinates, i.e. ∂u/∂t = 0. Thus, the travelling wave
solution satisfies

0 = D
d2u

dz2
+ c

du

dz
+ ru

(
1− u

K

)
. (4.32)

and we choose boundary conditions

u(−∞) = K, u(∞) = 0. (4.33)

Namely, far ahead of the wave there is no population, whilst behind the wave the population
is at carrying capacity.]

3. [Using the substitution v = ∂u/∂z, we now consider equation (4.32) as a system of two first
order ODEs

du

dz
=v, (4.34)

D
dv

dz
=− cv − ru

(
1− u

K

)
. (4.35)

The steady states of these are (0, 0) and (K, 0). The Jacobian of the system is

J =

[
0 1

r(2us/K − 1)/D −c/D

]
. (4.36)
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] [The eigenvalues satisfy

−λ
(
− c

D
− λ
)
− r

D

(
2
us
K
− 1
)

= 0, (4.37)

and, so,

λ± =
−c±

√
c2 + 4rD(2us/K − 1)

2D
, (4.38)

where we note that the eigenvalues depend only on the steady state value of u, not v.
Evaluating these eigenvalues at the steady states we get

λ±(K, 0) =
−c±

√
c2 + 4Dr

2
, λ±(0, 0) =

−c±
√
c2 − 4Dr

2
. (4.39)

Since c, r,D > 0 then λ−(K, 0) < 0 < λ+(K, 0) and, hence, (K, 0) is a saddle point. Equally,
Re(λ±(0, 0)) < 0, so (0, 0) is a stable point. However, depending on how large r is it could
either be a stable node, or a stable spiral.

However, if (0, 0) were a spiral point it would mean that u would become negative, but u
is a physical population and, so, this cannot happen. Thus, we require (0, 0) to be a stable
node and, hence, we need c2 ≥ 4Dr.]

4. [Finally, to show that the wave form is possible we need to show that there is a trajectory
linking (K, 0) to (0, 0). Since (K, 0) is unstable and (0, 0) is stable, it is suggestive, but we
still need to show that it is possible. To do this we construct a trapping region, R, which
will contain both critical points. The trajectory will enter R from (K, 0) and will be unable
to leave. We then depend on The Poincaré-Bendixson Theorem to tell us what will happen.]

Theorem 4.3.1 (The Poincaré-Bendixson Theorem). For a system of two first order or-
dinary differential equations, consider a closed bounded region, R. Suppose a trajectory,
p(t) = (u(t), v(t)), lies entirely within R. Then one of the following is true:

(a) p(t) is a closed trajectory, e.g. a limit cycle;

(b) p(t) asymptotically tends to a closed trajectory, e.g. a limit cycle;

(c) p(t) terminates at a stationary point.

Therefore, if R does not have a stationary point then there must be a limit cycle. Equally,
if R does not contain a limit cycle then the trajectory must terminate.

Proof. Nonexaminable, but, for the interested, see P. Glendinning, Stability, Instability and
Chaos: An Introduction to the Theory of Nonlinear Differential Equations.

[Using The Poincaré-Bendixson Theorem we will show that R cannot contain a limit cycle
and, thus, the trajectory, must terminate at (0, 0). Thereby providing us with a waveform
solution that links (K, 0) to (0, 0).]
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[We begin by considering the direction of the trajectory at any point in the phase plane
(u, v),

dv

du
=
−cv − ru

(
1− u

K

)
Dv

,

=− c

D
−
ru
(
1− u

K

)
Dv

,

<− c

D
whenever 0 < u < K. (4.40)

Using this we construct a triangular region, R such that

R = {(u, v) : 0 ≤ u ≤ K,−cu
D

< v < 0} (4.41)

and consider the (u, v) phase plane (see Figure 4.8). Firstly, we construct the nullclines

v =0, (4.42)

v =
r

c
u
( u
K
− 1
)
, (4.43)

(blue lines in Figure 4.8) then we consider the sign of each derivative in the different sectors,
and on the nullclines and use these to draw in the directional arrows (black and blue arrows,
respectively).

Next, we draw the R region and consider the direction of the dynamics on each of the
boundaries. By the derivation of inequality (4.40) we know that the directional arrows are
always steeper than the line v = −cu/D, thus, trajectories inside R cannot leave via the
hypotenuse. For v = 0, 0 ≤ u ≤ K we have that u′ = 0 and v′ < 0 so, again, the trajectory
cannot leave via the horizontal section of R. When u = K and v ≤ 0 we have that u′ < 0
and v′ > 0, which once again points into R and, thus, once a trajectory enters R it cannot
escape via the side.

Finally, we know a limit cycle cannot exist in R as u′ ≤ 0 at every point in R. However,
if the trajectory were to cycle the values must increase, as well as decrease, which is not
possible. Thus, by The Poincaré-Bendixson Theorem the trajectory must terminate at a
steady state and (0, 0) is the only candidate.

Hence, we have demonstrated that a trajectory linking (K, 0) to (0, 0) is possible. A possible
trajectory is shown in green in Figure 4.8.]

5. [Note that we have shown a Fisher wave is possible in equation (4.26). We have not shown
that it is guaranteed. However, as you might expect, Fisher waves do generically appear in
the Fisher equation. Proving this is beyond this course. However, we can simulate equation
(4.26) and demonstrate that our assumptions and intuition do hold. Firstly, compare Figure
4.7 and the left subfigure of Figure 4.9. Here, we see that apart from near the boundariesa

the wave does propagate with a constant wave form shape. Equally, by comparing Figure
4.8 and the middle subfigure of Figure 4.9 we can see that the trajectory of the solution of
equation (4.26) does follow the (u, v) phase plane of equation (4.32). Finally, the Figure 4.9
demonstrates that the wave does travel with a constant rate (away from the boundaries).
][Critically, our maths provides only the inequality c ≥

√
4Dr =

√
4× 1× 4 = 4. Our maths

does not predict the general observation that c→
√
Dr.]

aAlthough our mathematics is specifically for an infinite domain, we, of course, cannot simulate this. Thus,
often mathematicians simulate “large” domains and consider the solution far away from the boundaries. However,
what “large” means is heavily context dependent.
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Figure 4.7: Schematic diagram of what a Fisher wave should look like, to aid our intuition.

Figure 4.8: Phase plane of the Fisher equation in moving coordinates, equations (4.34) and (4.35).

4.4 Check list

By the end of this chapter you should be able to:

� reproduce all definitions;

� state and prove all theorems, where proofs are given;

� derive the taxis and diffusion PDE forms from discretised domains;

� derive appropriate boundary condition from discretised domains;
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Figure 4.9: Simulation of Fisher’s equation (4.26) presented in a number of ways. Left: Different time
points of the wave profile. Middle: Phase plane with added simulated trajectory. Right: Time-space
plot of u. Parameters r = 4, D = 1 and K = 2.

� specify what different boundary conditions mean;

� convert PDEs to travelling wave coordinates;

� derive conditions underwhich travelling waves could form.



Chapter 5

Pattern Formation

Examples of the importance of spatial patterning and structure can be seen just about everywhere in
the natural world (see Figure 5.1). Here, we will be concerned with building and analysing models
which can generate such patterns. Specifically, we want to see how simplicity can lead to complexity.

Figure 5.1: Examples of spatial patterning.

Definition 25. Patterns are stable, time-independent, spatially heterogeneous density profiles.

Definition 26. Morphogens are pattern forming agents. They can be proteins, cells, animals, etc.

5.1 French flag patterning

One of the most common mechanisms of pattern creation is that of using cells to read local concen-
trations of morphogens. If all cells sense the same concentration then they will all differentiate to be
the same type of cell. However, if there is a heterogeneous spread of morphogen then we can define
thresholds, T1 > T2 such that cells that sense a morphogen level greater than T1 will differentiate
differently to those that sense a morphogen amount lower than T2 (see Figure 5.2). The question thus
becomes, how does one generate a heterogeneous morphogen profile?

One of the simplest methods of producing a heterogeneous morphogen profiles is to have hetero-
geneous production of morphogen. In this section, we will consider isolated regions of production

60
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Figure 5.2: Schematic mechanism of French flag patterning.

and consider the morphogen pattern that arise. This is known as French flag patterning (see Figure
5.2).

Example 5.1.17 Localised source

Consider a morphogen u produced at x = 0. The morphogen is able to diffuse into the one-
dimensional tissue interval [0, L], with diffusion rate D. We assume further that the morphogen
cannot leave through the boundary x = L, i.e. it is a reflective boundary. Further, assume that
as the morphogen travels it decays at a rate proportional to itself. The mathematical model of
this situation is

∂u

∂t
= D

∂2u

∂x2︸ ︷︷ ︸
Diffusion

− γu,︸︷︷︸
Decay

(5.1)

u(0, t) = S,︸ ︷︷ ︸
Dirichlet condition as a boundary source

∂u

∂x
(L, t) = 0,︸ ︷︷ ︸

Zero-flux condition at the right-hand side

(5.2)

u(x, 0) = 0.︸ ︷︷ ︸
Initially, there is no morphogen in the field

(5.3)

Note that initial condition do not satisfy the boundary condition. Thus, we expect there would
be a singularity in the solution as t → 0. Although we are able to solve this equation using a
separable solution, i.e. u(x, t) = f(x)g(t), and Fourier series we are more interested in the steady
state situation. Namely, what is the shape of u far into the future?.

[To solve this problem we set ∂u/∂t = 0 and solve the resulting ODE problem

0 = D
d2u

dx2
− γu, (5.4)

u(0) = S,
du

dx
(L) = 0. (5.5)
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] [We substitute u = A exp(λx) into equations (5.4) and (5.5) where we use A to satisfy the
boundary conditions and derive an auxiliary equation for λ,

λ± =

√
γ

D
. (5.6)

Thus, there are two consistent values of λ. We could now continue to solve the boundary conditions
in terms of

u = A+ exp

(
x

√
γ

D

)
+A− exp

(
−x
√
γ

D

)
, (5.7)

however, it is easier to note that

cosh(θ) =
1

2
(exp (θ) + exp(−θ)) , (5.8)

sinh(θ) =
1

2
(exp (θ)− exp(−θ)) , (5.9)

and solve in terms of

u = A cosh

(
x

√
γ

D

)
+B sinh

(
x

√
γ

D

)
. (5.10)

The Dirichlet boundary condition at x = 0 means that A = S and the zero-flux condition means
that B must satisfy

0 = S sinh

(
L

√
γ

D

)
+B cosh

(
L

√
γ

D

)
. (5.11)

We can rearrange equation (5.11) and substitute the form of B back into equation (5.10) to
produce

u = S cosh

(
x

√
γ

D

)
−
S sinh

(
L
√

γ
D

)
cosh

(
L
√

γ
D

) sinh

(
x

√
γ

D

)
. (5.12)

]

Figure 5.3: Simulation of equations (5.1) and (5.3). Parameters L = 5, D = 1, γ = 0.1 and S = 2.
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5.1.1 Digit specification in the limb bud

One successful applications of the French flag model is in understanding chick limb development (see
Figure 5.4). Biologists have identified a region, called the “polarising zone”. This small region of cells
exists towards the posterior of the chick limb bud and is a localised source of a protein called “Sonic
Hedgehog”1, or Shh for short.

Shh diffuses out from the polarising zone and appears to specify digit formation through a concen-
tration dependent mechanism. Critically, to really cement the idea that the digits are specified through
a French flag mechanism biologists perturbed the limb bud system by adding a second polarising region
to the anterior part of the limb bud (see Figure 5.4(c)). The experimental system gave rise to chicks
with extra digits, but, more importantly, the digit identities were reversed. Such results are predicted
exactly by adding a second boundary source to equation (5.1). Further, if the second source has a
reduced strength then, as we would expect from a concentration dependent, development the extra
development never forms the digits that require the highest levels of Shh.

Of course, this is not the end of the story. More recent work in this area suggests that digit
specification is not only dependent on the spatial concentration of Shh that the cells sense, but also
the amount of time which they are able to sense the concentration. Thus, a high concentration of Shh
causes the first digit to develop. However, if we remove the high concentration too early we are left
we a digit that is more akin to the final digit that develops.

What you should take from this is that although we have many tools to understand parts of
biological development we still do not fully understand the whole. An idea that nicely transitions us to
the next section, where understanding each mechanism separately does not provide an undestanding
of the whole.

5.2 The Turing instability

Although the French flag mechanism is able to produce long-range patterns it still requires heterogene-
ity to be built into the system. We now consider a patterning mechanism that can produce spatial
structure from randomness.

In 1952, the logician, computer scientist, code breaker and mathematician Alan Turing proposed a
novel mathematical model for pattern formation. He hypothesised that the patterns we see arise due
to cells responding to underlying pre-patterns of chemical concentrations. He termed these chemicals
morphogens, and showed that spatially heterogeneous patterns could arise in systems in which these
chemicals reacted with each other and also underwent diffusion - a phenomenon termed diffusion-driven
instability. Making the further assumption that cell fate was determined in a morphogen concentration-
dependent manner, the chemical pre-pattern would manifest itself in a pattern composed of spatially
heterogeneous cell fates.

5.2.1 Diffusion Driven Instability

Consider a system of two morphogens (u, v) that are able to interact with each other through kinetics
(f(u, v), g(u, v)) and diffuse throughout a one-dimensional domain, [0, L], with diffusion coefficients
(Du, Dv), respectively. Finally, we assume that the domain has zero-flux boundary conditions. The

1It is called Sonic Hedgehog because it was originally discovered in flies and upregulating the protein caused the flies
to be covered with stiff hair spikes.
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(a) A stage 26 chick foetus

(b) Forelimb bud developing digits.

(c) Control and altered digit development by adding exogenous Shh sources.

Figure 5.4: Digit development in chickens. See subcaptions for details. In (b) The arrows highlight
Hox genes. The “S” numbers refer to the stage of development. You do not need to know these. Note
each subcaption is a link to its source.

https://www.swarthmore.edu/NatSci/sgilber1/DB_lab/Chick/Chick_web_pages/Lauren_Fety/chick_web.html
Vargas, Alexander & Kohlsdorf, Tiana & Fallon, John & Vandenbrooks, John & Wagner, Gunter. (2008). The Evolution of HoxD-11 Expression in the Bird Wing: Insights from Alligator mississippiensis. PloS one. 3. e3325. 10.1371/journal.pone.0003325.
http://www.mun.ca/biology/desmid/brian/BIOL3530/DEVO_11/ch11f12.jpg
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mathematical system representing this set up is

∂u

∂t
= Du

∂2u

∂x2
+ f(u, v), (5.13)

∂v

∂t
= Dv

∂2v

∂x2
+ g(u, v), (5.14)

∂u

∂x
(x, t) = 0 at x = 0, L. (5.15)

Definition 27. A homogeneous steady state, (us, vs), is a solution satisfying equations (5.13)-(5.15)
assuming no spatial, or temporal, variation, i.e.

∂u

∂t
=
∂v

∂t
=
∂2u

∂x2
=
∂2v

∂x2
= 0. (5.16)

Using the above definition a homogeneous steady state satisfies

f(us, vs) = 0 = g(us, vs). (5.17)

We will be looking for conditions under which these states evolve into patterns.

Definition 28. A diffusion driven instability, also referred to as a Turing instability, occurs when a
homegeneous steady state, which is stable in the absence of diffusion, becomes unstable when diffusion
is present.

The fact that diffusion is going to be responsible for the patterning we are considering is quite
surprising. Diffusion, in isolation, disperses a pattern; yet diffusion, in combination with the kinetic
terms, can drive a system towards a state with spatial structure.

5.2.1.1 A note on initial conditions

To fully close the system we need to specify initial conditions, (u(x, 0), v(x, 0)), however, these are
unimportant and we will be simply assuming that the are random perturbations around the homoge-
neous steady state.

In a full simulation the final pattern will heavily rely on the initial conditions. Since we are
assuming that there is no intelligence behind the pattern construction, these patterns are best suited
to understanding individualised pattern, e.g. finger prints, zebra stripes, etc.

Equally, due to subcritical bifurcations of the patterning structures it could be possible for the
initial conditions to dictate whether patterns are seen, or not. However, such subleties outside of this
course.

5.2.1.2 A note on boundary conditions

A homogeneous steady state requires the solution to be uniform across the entire domain. In other
words the concentration profile will be flat, or

∂u

∂x
= 0 =

∂v

∂x
(5.18)

everywhere. We note that the homogenous Neumann boundary conditions easily satisfy such re-
quirments. Alternatively, we could use Dirichlet boundary conditions, however, we could have to be
careful as to how we fix the boundary values. Namely, we would require that the boundaries are
compatible with the homogeneous steady states,

u(0, t) = us = u(L, t) v(0, t) = vs = v(L, t). (5.19)
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5.2.2 Stability without diffusion

[As mentioned in definition 28 the diffusion driven instabilty requires us to fulfil two properties. Namely,
(us, vs) is stable when diffusion is not considered and unstable when diffusion is considered.

In the absence of diffusion equations (5.13) and (5.14) break down to a system of coupled ODEs,
thus, we already know how to derive the stability conditions in this case. Namely, we consider a
temporal perturbation to the steady states, i.e.(

u
v

)
=

(
us
vs

)
+

(
εu
εv

)
exp(λt), (5.20)

where (εu, εv) is a constant vector and we seek conditions under which Re(λ) < 0. Thus, for (us, vs)
to be a stable steady state of

∂u

∂t
= f(u, v), (5.21)

∂v

∂t
= g(u, v), (5.22)

we consider the eigenvalues of the accompanying Jacobian,

J =

[
fu fv
gu gv

]
, (5.23)

evaluated at the steady state. The eigenvalues, λ, are solutions to the auxiliary equation

0 = det(J − λI) =

∣∣∣∣∣ fu − λ fv
gu gv − λ

∣∣∣∣∣ = λ2 − λ(fu + gv) + fugv − fvgu = λ2 − λT +D. (5.24)

From Appendix C we see that for stability we require

T = fu + gv < 0, (5.25)

D = fugv − fvgu > 0. (5.26)

Equations (5.25) and (5.26) are the first two Turing conditions]

5.2.3 Instability with diffusion

[Now that we are including diffusion we require the steady state perturbation to have a spatial com-
ponent (

u
v

)
=

(
us
vs

)
+

(
εu(x)
εv(x)

)
exp(λt), (5.27)

and that in this case we derive conditions under which λ > 0. Substituting solution form (5.27) into
equations (5.13) and (5.14) gives

λ exp(λt)

(
εu
εv

)
= exp(λt)

(
Du 0
0 Dv

)
∂2

∂x2

(
εu
εv

)
+

(
f(u, v)
g(u, v)

)
, (5.28)

where we have suppressed the arguments of f and g for brevity. Assuming that the perturbation is
initially small we can expand the f and g terms. As normal, the constant term disappears because
(us, vs) is defined to be a homogeneous steady state, so to first order in εu and εv we have

λ exp(λt)

(
εu
εv

)
= exp(λt)

(
Du 0
0 Dv

)
∂2

∂x2

(
εu
εv

)
+ exp(λt)

(
fu fv
gu gv

)(
εu
εv

)
. (5.29)
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Cancelling out the exp(λt) term and rearranging provides

0 =

(
Du 0
0 Dv

)
∂2

∂x2

(
εu
εv

)
+

(
fu − λ fv
gu gv − λ

)(
εu
εv

)
. (5.30)

Searching for inspiration, we let

D =

(
Du 0
0 Dv

)
ε =

(
εu
εv

)
(5.31)

and note that the matrix on the right of equation (5.30) is just J − λI. Note that we should have
expected J − λI to appear on the right of equation (5.30) because setting the diffusion rates to zero
would have landed us back into the case of the previous section, thus, it is a consistency check that
we should be able to recover J − λI from equation (5.30). Upon substituting the new variables into
equation (5.30) we derive

0 = Dεxx + (J − λI)ε. (5.32)

At this point inspiration strikes and we compare equation (5.32) with an analogous scalar equation.
Specifically, the solution to the scalar equation

0 = Exx + kE (5.33)

is E(x) = A cos
(√

kx
)

+ B sin
(√

kx
)

, or E(x) = A cosh
(√

kx
)

+ B sinh
(√

kx
)

, depending on the

sign of k and A and B are constants used to satisfy the boundary conditions. Critically, since we want
to satisfy zero-flux boundary conditions we require k > 0 so we can use the trigonometric form, rather
than the hyperbolic functional form.

Thus, by comparison, we suppose

ε =

(
εu1

εv1

)
cos(kx) +

(
εu2

εv2

)
sin(kx), (5.34)

where (εu1, εu2, εv1, εv2) are constants that are used to satisfy the boundary conditions. To satisfy
zero-flux boundary conditions we require(

εu2

εv2

)
= 0 and k =

nπ

L
(5.35)

for some integer n. To satisfy Dirichlet boundary conditions we require(
εu1

εv1

)
= 0 and k =

nπ

L
, (5.36)

for some integer n. To satisfy Robin boundary conditions we would not be able to set either term to
zero, rather we would need all degrees of freedom.

Substituting equation (5.34) into equation (5.32) provides the following consistency relationship

0 =
(
−Dk2 + J − λI

)
ε. (5.37)

Once again this is a nullvector equation, thus, to have non-trivial solutions we require

0 = det
(
−Dk2 + J − λI

)
= det(M − λI) =

∣∣∣∣ −Duk
2 + fu − λ fv
gu −Dvk

2 + gv − λ

∣∣∣∣ , (5.38)

where M = −Dk2 + J . Simplifying the system we get

0 =
(
−Duk

2 + fu − λ
) (
−Duk

2 + fu − λ
)
− gufv,

=λ2 − λ
(
fu + gv − k2(Du +Dv)

)
+
(
−Duk

2 + fu
) (
−Dvk

2 + gv
)
− gufv,

=λ2 − λtrace(M) + det(M). (5.39)
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Since we require an instability to occur at least one solution of equation (5.39) has to have positive
real part. Critically, from equation (5.25) we know that fu + gv < 0, further, since k2, Du and Dv are
all positive we must have that

0 > fu + gv − k2(Du +Dv) = trace(M). (5.40)

Comparing this with the result in Figure C.1 we see that the only way to get an instability is if
det(M) < 0, namely

det(M) = DuDvk
4 − k2(Dvfu +Dugv) + fugv − gufv < 0. (5.41)

Since det(M) is quadratic in k2 then it has a negative region if and only if it has two real roots, k2
±,

say, (see Figure 5.5). Solving det(M) = 0 provides

k2
± =

(Dvfu +Dugv)±
√

(Dvfu +Dugv)2 − 4DuDv(fugv − gufv)
2DuDv

, (5.42)

for these two roots to be real and positive we require

Dvfu +Dugv > 0, (to ensure that k2
− > 0) (5.43)

(Dv +Du)2 − 4DuDv(fugv − gufv) > 0. (to make the roots real) (5.44)

Inequalities (5.43) and (5.44) are the third and fourth Turing conditions.
Satisfying inequalities (5.43) and (5.44) ensures that there are real values k, such that k2

− < k2 < k2
+

for which equation (5.39) has positive real roots. However, we are not quite done. As a final step
we must ensure that our solution satisfies the boundary conditions as specified in equation (5.35).
Collecting all of these requirements together we generate the full set of Turing conditions,]

Figure 5.5: Schematic diagram of det(M).

Necessary conditions to produce patterning in using equations (5.13) and (5.14)

fu + gv < 0, (5.45)

fugv − fvgu > 0, (5.46)

Dvfu +Dugv > 0, (5.47)

(Dvfu +Dugv)
2 − 4DuDv(fugv − gufv) > 0, (5.48)

∃n ∈ Z such that k− <
nπ

L
< k+. (5.49)
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5.2.4 Corollaries to Turing’s theory

We have derived a number of necessary conditions that allow patterns to occur. However, considering
our results a little further we gain a number of further insights. [

1. Our derivation only guarantees that the steady state will be stable without diffusion and unstable
with diffusion. It does not guarantee that the instability will stabilise again in a patterned form.
The stability of the patterned state is governed by the non-linear terms and their analysis is
outside of this course.

2. By comparing inequalities (5.45) and (5.47) we produce two conclusions. Firstly, fu and gv must
be of opposite signs and, secondly, Dv 6= Du.

3. Having concluded that fu and gv are opposite signs inequality (5.46) demonstrates that fv and
gu must be of opposite sign too.

4. The last two insights constrain the sign forms of the Jacobian to the following four types

J =

(
+ +
− −

)
,

(
− −
+ +

)
,

(
+ −
+ −

)
,

(
− +
− +

)
. (5.50)

Note that the second and fourth sign structures can be gained from the first and third, respec-
tively, by swapping the definitions of u and v.

5. The first two Jacobian forms are known are cross kinetics. They produce patterns that are out of
phase with one another. Namely, peak in u correspond to troughs in v. The last two are called
pure kinetics. They produce patterns that are in phase with one another. Namely, peak in u
correspond to peaks in v.

6. Consider sign structures 1 and 3. In both cases fu > 0 this means that the u population causes
an increase in the u population, so u is known as a self-activator. Similarly, because gv < 0 this
means that v is a self inhibitor.

7. Combining sign structures 1 and 3 with equations (5.45) and (5.47) means that Dv > Du.
Combining this result with the previous definitions of the characteristics of u and v provides us
with an intuitive way of understanding patterning. Namely, the system works via long range
inhibition and short range activation.

8. If the domain length, L, is too small then we cannot satisfy inequality (5.49). Thus, we see that
it is not enough to consider the dynamics occurring over space; the space has to be big enough
to support the patterning wavelength.

]

Example 5.2.18 Specific Turing kinetic example: Schnakenberg kinetics

We consider a spatially extended version of the Schnakenberg kinetics as a model of morphogen
populations,

∂u

∂t
=
∂2u

∂x2
+ α− u+ u2v, (5.51)

∂v

∂t
= Dv

∂2v

∂x2
+ β − α− u2v, (5.52)

on a domain, [0, L] with zero-flux boundary conditions and random perturbation around the steady
state as an initial condition. Further, we suppose Dv, α and β are positive constants. Derive the
Turing conditions that need to be satisfied for a pattern to appear.
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1. [First we need to find the homogeneous steady states from

0 = α− u+ u2v, (5.53)

0 = β − α− u2v. (5.54)

Solving equations (5.53) and (5.54) simultaneously we derive

(us, vs) =

(
β,
β − α
β2

)
. (5.55)

Since we want a biologically relevant steady state we require β > α.]

2. [We now find the Jacobian,

J(us, vs) =

(
−1 + 2usvs u2

s

−2usvs −u2
s

)
. (5.56)

As we have seen previously, it is generally easier to not substitute components in until the
end. However, we will make a note here that for a Turing instability to occur we must have
that the sign structure of the Jacobian corresponds to those shown in Section 5.2.4. Since
the Jacobian structure is currently

J(us, vs) =

(
? +
− −

)
(5.57)

we must have that fu > 0, namely

0 < −1 + 2usvs,

=⇒ 0 < −1 + 2
β − α
β

,

=⇒ 2α < β,

=⇒ α <
β

2
,

which we note is a sharper bound than α < β derived above for the steady states.]

3. [Next we compute the trace and determinant of J and determine conditions under which
the trace is negative and the determinant is positive,

0 > −1 + 2usvs − u2
s, (5.58)

0 < (−1 + 2usvs)(−u2
s)− (u2

s)(−2usvs) = u2
s. (5.59)

Inequality (5.59) is always satisfied, so we only need to satisfy equation (5.58). Substituting
in the values of equation (5.55) we derive

0 >− β2 + 2
β − α
β
− 1,

=⇒ α >
−β3 + β

2
=
−β(β + 1)(β − 1)

2
. (5.60)



CHAPTER 5. PATTERN FORMATION 71

] [Thus, for the homogeneous steady state to be stable in the absence of diffusion we require

β

2
> α >

−β(β + 1)(β − 1)

2
, (5.61)

which is illustrated in Figure 5.6(a).]

4. [For pattern formation to occur we now require that the steady state becomes unstable once
diffusion is added. We construct

M =

(
−k2 − 1 + 2usvs u2

s

−2usvs −k2Dv − u2
s

)
. (5.62)

and derive conditions under which

det(M) = Dvk
4 + (Dv(1− 2usvs) + u2

s)k
2 + u2

s (5.63)

is negative for some region of k2. We could use inequalities (5.47) and (5.48), but it is quite
informative to solve for k2 and observe where our conditions stem from. Specifically,

k2
± =

−(Dv(1− 2usvs) + u2
s)±

√
(Dv(1− 2usvs) + u2

s)
2 − 4Dvu2

s

2Dv
, (5.64)

so we require

0 < −(Dv(1− 2usvs) + u2
s) = 2Dv

β − α
β
− β2 −Dv,

=⇒ Dv >
β3

β − 2α
, (5.65)

and
0 < (Dv(1− 2uv) + u2)2 − 4Dvu

2

=⇒ 0 < (β − 2α)2D2
v − 2β3(3β − 2α)Dv + β6 = h(Dv) (5.66)

The function h(Dv) is a positive quadratic in Dv, so it is satisfiable for large enough Dv.
Equally, we notice that since α < β/2 < 3β/2 the coefficient of Dv is negative. We complete
the square of equation (5.66) to derive that we require

0 <

(
Dv −

β3(3β − 2α)

(β − 2α)2

)2

+
β6

(β − 2α)2
−
(
β3(3β − 2α)

(β − 2α)2

)2

. (5.67)

In this form we see that the minimum value of the parabola (with respect to Dv) is

β6

(β − 2α)2
−
(
β3(3β − 2α)

(β − 2α)2

)2

. (5.68)

Thus, if the minimum value is positive then equation (5.66) is always satisfied. Namely

0 <
β6

(β − 2α)2
−
(
β3(3β − 2α)

(β − 2α)2

)2

,

=⇒ (3β − 2α)2 < (β − 2α)2 (5.69)
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] [which is impossible because 0 < β − 2α < 3β − 2α. Thus, h(Dv) must have two roots

D±v =
β3(3β − 2α)± β3

√
(3β − 2α)2 − (β − 2α)2

(β − 2α)2
(5.70)

and inequality (5.66) will be satisfied for D < D−v and D > D+v. Rearranging equation
(5.70) to

D±v =
β3

(β − 2α)

(1 +
2β

(β − 2α)

)
±

√(
1 +

2β

(β − 2α)

)2

− 1

 ,

=
β3

(β − 2α)

(1 +
2β

(β − 2α)

)
±

√(
2β

(β − 2α)

)2

+ 2
2β

(β − 2α)

 . (5.71)

we can now see that

1 <

(
1 +

2β

(β − 2α)

)
+

√(
2β

(β − 2α)

)2

+ 2
2β

(β − 2α)
,

1 >

(
1 +

2β

(β − 2α)

)
−

√(
2β

(β − 2α)

)2

+ 2
2β

(β − 2α)
. (5.72)

So,

D+v >
β3

β − 2α
> D−v. (5.73)

Hence, from inequality (5.65) we can never be in the situation that Dv < D−v and we only
need to consider Dv > D+v (see Figure 5.6(b)).]

5. [Finally, we need to ensure that our domain is large enough to support patterning. Namely,
we need to ensure that there exists integers, n, such that

k− <
nπ

L
< k+. (5.74)

Note we tend to use the lower limit because this normally allows us to just fine tune what
modes are available. Thus we want to satisfy

nπ

k+
< L, (5.75)

where we note that the smallest L can be is when n = 1. Substituting equation (5.64) into
equation (5.75) we derive that the length of the domain must be at least

π

√
2Dv

−(Dv(1− 2usvs) + u2) +
√

(Dv(1− 2usvs) + u2
s)

2 − 4Dvu2
s

. (5.76)

]

6. [Collecting all the pertinent inequalities together then for patterning to form we need to
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][satisfy:

β

2
> α >

−β(β + 1)(β − 1)

2
, (5.77)

Dv >
β3

(β − 2α)

(1 +
2β

(β − 2α)

)
±

√(
1 +

2β

(β − 2α)

)2

− 1

 , (5.78)

L > π

√
2Dv

−(Dv(1− 2uv) + u2) +
√

(Dv(1− 2uv) + u2)2 − 4Dvu2
. (5.79)

Taking Dv and L large enough will always allow us to satisfy inequalities (5.78) and (5.79).
Choosing α is slightly more tricky. Suppose we fix β = 0.9 then

0.45 > α > 0.0855. (5.80)

So, let us fix α = 0.1. Inequality (5.78) then becomes

Dv > 7.29, (5.81)

so, let Dv = 10. Finally, inequality (5.79) becomes

L > 4.28, (5.82)

so let L = 5. Simulating the system under these parameter values provides Figure 5.7.
Clearly, we see although initially there is nothing but noise the system can quickly and
easily arrange itself to a heterogeneous solution.]

5.2.5 A comment on domain size and spatial dimensions

From the previous section we can conclude that as the one-dimensional domain gets larger (L increases)
higher values of the integer n are valid in equation (5.48). Thus, we would expect that more peaks
would appear as the domain gets larger. This is actually observed in nature (see figures 5.10(a) and
5.10(b)). However, animal coats are not one-dimensional, thus, we need to consider how our intuition
generalises in higher dimensions.

Consider a Turing system on a two dimensional rectangle with (x, y) ∈ [0, L1] × [0, L2], zero flux
boundary conditions and the Laplacian involving both second spatial derivatives,

∇2 =
∂2

∂x2
+

∂2

∂y2
. (5.83)

Our perturbation is then of the form(
u
u

)
=

(
us
vs

)
+

(
εu1

εv1

)
cos(kxx) cos(kyy). (5.84)

Following the same procedure as above we find that the allowed values of k2 are now

k2 = k2
x + k2

y =
m2π2

L2
1

+
n2π2

L2
2

, (5.85)

for some integers m and n, excluding the case where they are both zero.
Now, suppose the domain is long and thin, i.e. L2 � L1 and L1 is sufficiently large. Then, since we

require k− < k < k+, the only means by which we can have a Turing instability is if n = 0. Thus, the
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(a)

(b)

(c)

Figure 5.6: (a) (β, α) parameter region, which provides stable homogeneous steady states. (b)
Schematic diagram of h(Dv). (c) (β, α,Dv) parameter region, which provides diffusion driven un-
stable homogeneous steady states.
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Figure 5.7: Simulation of equations (5.51) and (5.52) with parameters (α, β,Dv, L) = (0.1, 0.9, 10, 5).
The left image shows the evolving concentration of u over space and time, whilst the right image shows
the final heterogeneous solution.

linear analysis predicts that the patterns are going to be simply spatial oscillations in one dimension.
In other words, the pattern will be striped.

For a sufficiently large rectangular domain, where L1 ≈ L2, we can then satisfy the wave mode
criteria with both n and m > 0. Thus, the linear analysis predicts spatial oscillations in both x and y
directions. In other words, the pattern will tend to have a spotted structure (see Figure 5.8)

Figure 5.8: Simulation of equations (5.51) and (5.52) with parameters (α, β,Dv) = (0.1, 0.9, 10) on
two different two-dimensional domain sizes.

Putting these insights together we see that as the patterning domain gets smaller the patterning
type must transition in the following order: spots transform into stripes, which can transform into
spatial heterogeneity (see Figure 5.9).

Thus, if Turing patterns are behind animal pigmentation patterns we should be able to see animal
with spotty bodies and striped tails, but we would not expect to find an animal with a striped body
and a spotted tail. Common observations are consistent with such a prediction (see Figure 5.10(c))
but one should not expect universal laws in the realms of biology, as one does in physics (see Figure



CHAPTER 5. PATTERN FORMATION 76

Figure 5.9: Simulation of equations (5.51) and (5.52) with parameters (α, β,Dv) = (0.1, 0.9, 10) on
three sizes of tapered domain

5.10(d)).

5.3 Do they exist?

As we have seen, diffusion driven instabilities can theoretically drive pattern formation. Amazingly,
there are lots of chemical systems where this is exactly the case (see Figure 5.11). Unfortunately, there
is yet no conclusive evidence that it can drive pattern formation in biological systems. There are many
suggestive pieces of work and many experimental labs are working on isolating the morphogens, but
they are still only theoretical in biology.

Other groups have foregone looking for biological examples and are instead focused on creating
there own biological systems that will generate the required conditions in a field called “synthetic
biology”. They are generating a toolbox of biological components that can act like mathematical
operators and, thus, they are essentially converting biological problems in computational problems.

We live in exciting times.
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(a) (b)

(c) (d)

Figure 5.10: (a) Valais goats have one stripe transition whereas (b) Belted Galloways have two pigment
transitions.(c) The genet cat has a spotted body and striped tail. (d) Lemurs have no pattern on the
body and a striped tail.
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(a) A chemically formed Turing pattern.

(b) Mouse limb development may be governed by a Turing-like patterning process.

Figure 5.11: Examples of pattern formation in chemistry and biology. Note each subcaption is a link
to its source.

https://science.sciencemag.org/content/324/5928/772/tab-figures-data
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486416/


Appendix A

Proof of stability criterion for scalar
ODE equations

Here we provide a proof of Theorem 2.5.1.

Proof. Consider a solution of the form u(t) = us + ε(t), where |ε(0)| � 1. Substituting the perturbed
solution into equation (2.22), we find that

ε̇ = F (us + ε). (A.1)

We now use Taylor’s theorem on the right-hand side to derive the approximation

F (us + ε) ≈ F (us) + ε
dF

du
(us) +

ε2

2

d2F

du2
(us) + . . . . (A.2)

Ignoring all terms except the linear order in ε we conclude that initially

ε̇ ≈ F (us) + ε
dF

du
(us). (A.3)

By assumption us is a stationary point and, thus, by definition, F (us) = 0. Hence, approximately,

ε̇ = ε
dF

du
(us). (A.4)

Equation (A.4) is trivially solvable since dF (us)/ du is a constant,

ε(t) = ε(0) exp

(
t

dF

du
(us)

)
. (A.5)

The exponential solution form tells us that if dF (us)/ du < 0 then ε(t) → 0 as t → ∞. This means
that our small perturbation dies out over time and the solution u(t) → us as t → ∞. In other words
us is stable because solutions that are slightly perturbed away from us tend to evolve back to us.

Oppositely, if dF (us)/ du > 0 then ε(t) → ∞ as t → ∞. Thus, the solution diverges away from
us meaning that us is unstable.
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Appendix B

Proof of stability criterion for ODE
systems

Here we provide a proof of Theorem 2.5.2.

Proof. The proof follows exactly the same strategy as Theorem 2.5.1. Specifically, because differentia-
tion is linear, you can use the exact same proof, but with tensors, rather than scalars. Namely, consider
the perturbed solution u(t) = us + ε(t), where ||ε(0)|| � 1. Substituting the perturbed solution into
equation (2.29), we find that

ε̇ = F (us + ε). (B.1)

We now use a multi-variable form of Taylor’s theorem on the right-hand side to derive the approxima-
tion

ε̇ ≈ J(us)ε. (B.2)

To make progress, we assume J is invertible, and, thus, diagonalisable. Critically, this means that we
can find a complete set of eigenvectors, {ν1, . . . ,νn}, and eigenvalues, {λ1, . . . , λ}, such that J can be
written as J = UDU−1, where D is a diagonal matrix with the eigenvalues along the diagonal, U is
a matrix with the, respective, eigenvectors as the columns and U−1 is the inverse of U . Substituting
this form of J into equation (B.2) produces

ε̇ = UDU−1ε, (B.3)

=⇒ U−1ε̇ = DU−1ε. (B.4)

The matrix U−1 is constant so we can take it within the time derivative on the left hand side. Hence,
defining η = U−1ε, we derive

η̇ = Dη. (B.5)

The closed form solution of equation (B.5) is

η =

n∑
i=1

ai exp(λit), (B.6)

where ai are defined by the initial conditions. Thus, the stability of η, and, hence, ε depends on the
eigenvalues, {λ1, . . . , λn} as stated in Theorem 2.5.2.
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Appendix C

Characterising the stability of a
two-dimensional ODE system

In the last Appendix we demonstrated that the stability of the steady states depends on the eigenvalues
of the Jacobian. In this section, we restrict ourselves to considering two-dimensional systems only and
illustrate that all steady states can be defined to fit a small number of categories.

The following derivation is going to be an explicit form of the proof shown in the last section. The
reason for this is that the condensed vector form of proof is less transparent and it is always good to
see a full sprawling derivation to illustrate the subtleties. Critically, although you may be specifically
be required to reproduce the proof, in a specific case you can generally just calculate the Jacobian
straight away and not bother with the initial linearisation steps.

Consider the general two-dimensional system

u̇ = f(u, v), (C.1)

v̇ = g(u, v). (C.2)

Let (us, vs), be a steady state, i.e. f(us, vs) = g(us, vs) = 0. Linearising around the steady state with
u = us + ε1 and v = vs + ε2 produces

ε̇1 = f(us + ε1, vs + ε2),

≈ f(us, vs)︸ ︷︷ ︸
=0

+fu(us, vs)ε1 + fv(us, vs)ε2. (C.3)

and, similarly,
ε̇2 = gu(us, vs)ε1 + gv(us, vs)ε2. (C.4)

The eigenvalues will, thus, depend on the four parameters (fu, fv, gu, gv). Note that we have not
restricted the signs of these parameters. Thus, any of them could be positive or negative. Due to
not knowing the signs of the derivatives we are unable to non-dimensionalise them out. However, in
a specific example, this maybe possible, thus, reducing down the number of free parameter groups in
the steady state and stability conditions.

Combining equations (C.3) and (C.4) we derive(
ε̇1
ε̇2

)
=

[
fu fv
gu gv

](
ε1
ε2

)
. (C.5)

Thus, we are left to find the eigenvalues of

J =

[
fu fv
gu gv

]
, (C.6)
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namely

det(J − λI) =

[
fu − λ fv
gu gv − λ

]
,

= (fu − λ)(gv − λ)− fvgu,
= λ2 − λ(gv + fu) + fugv − fvgu, (C.7)

= λ2 − λT +D, (C.8)

where equations (C.7) and (C.8) are the same but equation (C.8) is rewritten in terms of the trace,
‘T = tr(J)’, and determinant, ‘D = det(J)’, of the Jacobian, J . Finally, the eigenvalues of J have the
form

λ± =
T ±
√
T 2 − 4D

2
. (C.9)

the stability of the steady states can now be characterised solely through the dependence of λ± on
T and D (see Figure C.1). Critically, although Figure C.1 is useful, it is suggested that instead of
calculating the trace and determinant of the Jacobian and figuring out where in the stability diagram
that you lie, you calculate the eigenvalues of any system explicitly.

T

D
T 2 − 4D = 0 T 2 − 4D = 0

saddle

center

stable node unstable node

stable spiral unstable spiral

Figure C.1: Stability diagram in terms of the trace and determinant of the Jacobian.
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